Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Google BigQuery and OpenTSDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Google BigQuery and OpenTSDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Google BigQuery vs OpenTSDB Breakdown


 
Database Model

Data warehouse

Time series database

Architecture

BigQuery is a fully managed, serverless data warehouse provided by Google Cloud Platform. It is designed for high-performance analytics and utilizes Google’s infrastructure for data processing. BigQuery uses a columnar storage format for fast querying and supports standard SQL. Data is automatically sharded and replicated across multiple availability zones within a Google Cloud region

OpenTSDB can be deployed on-premises or in the cloud, with HBase running on a distributed cluster of nodes.

License

Closed source

GNU LGPLv2.1

Use Cases

Business analytics, large-scale data processing, data integration

Monitoring, observability, IoT, log data storage

Scalability

Serverless, petabyte-scale data warehouse that can handle massive amounts of data with no upfront capacity planning required

Horizontally scalable across multiple nodes using HBase as its storage backend

Google BigQuery Overview

Google BigQuery is a fully-managed, serverless data warehouse and analytics platform developed by Google Cloud. Launched in 2011, BigQuery is designed to handle large-scale data processing and querying, enabling users to analyze massive datasets in real-time. With a focus on performance, scalability, and ease of use, BigQuery is suitable for a wide range of data analytics use cases, including business intelligence, log analysis, and machine learning.

OpenTSDB Overview

OpenTSDB (Open Time Series Database) is an open-source, distributed, and scalable time series database built on top of Apache HBase, a NoSQL database. OpenTSDB was designed to address the growing need for storing and processing large volumes of time series data generated by various sources, such as IoT devices, sensors, and monitoring systems. It was initially developed by StumbleUpon in 2010 and later became an independent project with an active community of contributors.


Google BigQuery for Time Series Data

BigQuery can be used for storing and analyzing time series data, although it is more focused on traditional data warehouse use cases. BigQuery may struggle for use cases where low latency response times are required

OpenTSDB for Time Series Data

OpenTSDB is designed for time series data storage and analysis, making it an ideal choice for managing large scale time series datasets. Its architecture enables high write and query performance, and it can handle millions of data points per second with minimal resource consumption. OpenTSDB’s flexible querying capabilities allow users to perform complex analysis on time series data efficiently.


Google BigQuery Key Concepts

Some important concepts related to Google BigQuery include:

  • Projects: A project in BigQuery represents a top-level container for resources such as datasets, tables, and views.
  • Datasets: A dataset is a container for tables, views, and other data resources in BigQuery.
  • Tables: Tables are the primary data storage structure in BigQuery and consist of rows and columns.
  • Schema: A schema defines the structure of a table, including column names, data types, and constraints.

OpenTSDB Key Concepts

  • Data Point: A single measurement in time consisting of a timestamp, metric, value, and associated tags.
  • Metric: A named value that represents a specific aspect of a system, such as CPU usage or temperature.
  • Tags: Key-value pairs associated with data points that provide metadata and help categorize and query the data.


Google BigQuery Architecture

Google BigQuery’s architecture is built on top of Google’s distributed infrastructure and is designed for high performance and scalability. At its core, BigQuery uses a columnar storage format called Capacitor, which enables efficient data compression and fast query performance. Data is automatically partitioned and distributed across multiple storage nodes, providing high availability and fault tolerance. BigQuery’s serverless architecture automatically allocates resources for queries and data storage, eliminating the need for users to manage infrastructure or capacity planning.

OpenTSDB Architecture

OpenTSDB is built on top of Apache HBase, a distributed and scalable NoSQL database, and relies on its architecture for data storage and management. OpenTSDB stores time series data in HBase tables, with data points organized by metric, timestamp, and tags. The database uses a schema-less data model, which allows for flexibility when adding new metrics and tags. The OpenTSDB architecture also supports horizontal scaling by distributing data across multiple HBase nodes.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Google BigQuery Features

Columnar Storage

BigQuery’s columnar storage format, Capacitor, enables efficient data compression and fast query performance, making it suitable for large-scale data analytics.

Integration with Google Cloud

BigQuery integrates seamlessly with other Google Cloud services, such as Cloud Storage, Dataflow, and Pub/Sub, making it easy to ingest, process, and analyze data from various sources.

Machine Learning Integration

BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications.

OpenTSDB Features

Scalability

OpenTSDB’s distributed architecture allows for horizontal scaling, ensuring that the database can handle growing volumes of time series data.

Data Compression

OpenTSDB uses various compression techniques to reduce the storage footprint of time series data.

Query Language with time series support

OpenTSDB features a flexible query language that supports aggregation, downsampling, filtering, and other operations for analyzing time series data.


Google BigQuery Use Cases

Business Intelligence and Reporting

BigQuery is widely used for business intelligence and reporting, enabling users to analyze large volumes of data and generate insights to inform decision-making. Its fast query performance and seamless integration with popular BI tools, such as Google Data Studio and Tableau, make it an ideal solution for this use case.

Machine Learning and Predictive Analytics

BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications. BigQuery’s fast query performance and support for large-scale data processing make it suitable for predictive analytics use cases.

Data Warehousing and ETL

BigQuery’s distributed architecture and columnar storage format make it an excellent choice for data warehousing and ETL (Extract, Transform, Load) workflows. Its seamless integration with other Google Cloud services, such as Cloud Storage and Dataflow, simplifies the process of ingesting and processing data from various sources.

OpenTSDB Use Cases

Monitoring and Alerting

OpenTSDB is well-suited for large-scale monitoring and alerting systems that generate vast amounts of time series data from various sources.

IoT Data Storage

OpenTSDB can store and analyze time series data generated by IoT devices, such as sensors and smart appliances, enabling real-time insights and analytics.

Performance Analysis

OpenTSDB’s flexible querying capabilities make it an ideal choice for analyzing system and application performance metrics over time.


Google BigQuery Pricing Model

Google BigQuery pricing is based on a pay-as-you-go model, with costs determined by data storage, query, and streaming. There are two main components to BigQuery pricing:

  • Storage Pricing: Storage costs are based on the amount of data stored in BigQuery. Users are billed for both active and long-term storage, with long-term storage offered at a discounted rate for infrequently accessed data.
  • Query Pricing: Query costs are based on the amount of data processed during a query. Users can choose between on-demand pricing, where they pay for the data processed per query, or flat-rate pricing, which provides a fixed monthly cost for a certain amount of query capacity.

OpenTSDB Pricing Model

OpenTSDB is open-source software, which means it is free to use without any licensing fees. However, the cost of running OpenTSDB depends on the infrastructure required to support the underlying HBase database, such as cloud services or on-premises hardware.

Get started with InfluxDB for free

InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.