Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Cassandra and DataBend so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Apache Cassandra and DataBend perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Apache Cassandra vs DataBend Breakdown


 
Database Model

Distributed wide-column database

Data warehouse

Architecture

Apache Cassandra follows a masterless, peer-to-peer architecture, where each node in the cluster is functionally the same and communicates with other nodes using a gossip protocol. Data is distributed across nodes in the cluster using consistent hashing, and Cassandra supports tunable consistency levels for read and write operations. It can be deployed on-premises, in the cloud, or as a managed service

DataBend can be run on your own infrastructure or using a managed service. It is designed as a cloud native system and is built to take advantage of many of the services available in cloud providers like AWS, Google Cloud, and Azure.

License

Apache 2.0

Apache 2.0

Use Cases

High write throughput applications, time series data, messaging systems, recommendation engines, IoT

Data analytics, Data warehousing, Real-time analytics, Big data processing

Scalability

Horizontally scalable with support for data partitioning, replication, and linear scalability as nodes are added

Horizontally scalable with support for distributed computing

Apache Cassandra Overview

Apache Cassandra is a highly scalable, distributed, and decentralized NoSQL database designed to handle large amounts of data across many commodity servers. Originally created by Facebook, Cassandra is now an Apache Software Foundation project. Its primary focus is on providing high availability, fault tolerance, and linear scalability, making it a popular choice for applications with demanding workloads and low-latency requirements.

DataBend Overview

DataBend is an open-source, cloud-native data processing and analytics platform designed to provide high-performance, cost-effective, and scalable solutions for big data workloads. The project is driven by a community of developers, researchers, and industry professionals aiming to create a unified data processing platform that combines batch and streaming processing capabilities with advanced analytical features. DataBend’s flexible architecture allows users to build a wide range of applications, from real-time analytics to large-scale data warehousing.


Apache Cassandra for Time Series Data

Cassandra can be used for handling time series data due to its distributed architecture and support for time-based partitioning. Time series data can be efficiently stored and retrieved using partition keys based on time ranges, ensuring quick access to data points.

DataBend for Time Series Data

DataBend’s architecture and processing capabilities make it a suitable choice for working with time series data. Its support for both batch and streaming data processing allows users to ingest, store, and analyze time series data at scale. Additionally, DataBend’s integration with Apache Arrow and its powerful query execution framework enable efficient querying and analytics on time series data, making it a versatile choice for applications that require real-time insights and analytics.


Apache Cassandra Key Concepts

  • Column Family: Similar to a table in a relational database, a column family is a collection of rows, each consisting of a key-value pair.
  • Partition Key: A unique identifier used to distribute data across multiple nodes in the cluster, ensuring even distribution and fast data retrieval.
  • Replication Factor: The number of copies of data stored across different nodes in the cluster to provide fault tolerance and high availability.
  • Consistency Level: A configurable parameter that determines the trade-off between read/write performance and data consistency across the cluster.

DataBend Key Concepts

  • DataFusion: DataFusion is a core component of DataBend, providing an extensible query execution framework that supports both SQL and DataFrame-based query APIs.
  • Ballista: Ballista is a distributed compute platform within DataBend, built on top of DataFusion, that allows for efficient and scalable execution of large-scale data processing tasks.
  • Arrow: DataBend leverages Apache Arrow, an in-memory columnar data format, to enable efficient data exchange between components and optimize query performance.


Apache Cassandra Architecture

Cassandra uses a masterless, peer-to-peer architecture, in which all nodes are equal, and there is no single point of failure. This design ensures high availability and fault tolerance. Cassandra’s data model is a hybrid between a key-value and column-oriented system, where data is partitioned across nodes based on partition keys and stored in column families. Cassandra supports tunable consistency, allowing users to adjust the balance between data consistency and performance based on their specific needs.

DataBend Architecture

DataBend is built on a cloud-native, distributed architecture that supports both NoSQL and SQL-like querying capabilities. Its modular design allows users to choose and combine components based on their specific use case and requirements. The core components of DataBend’s architecture include DataFusion, Ballista, and the storage layer. DataFusion is responsible for query execution and optimization, while Ballista enables distributed computing for large-scale data processing tasks. The storage layer in DataBend can be configured to work with various storage backends, such as object storage or distributed file systems.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Apache Cassandra Features

Linear Scalability

Cassandra can scale horizontally, adding nodes to the cluster to accommodate growing workloads and maintain consistent performance.

High Availability

With no single point of failure and support for data replication, Cassandra ensures data is always accessible, even in the event of node failures.

Tunable Consistency

Users can balance between data consistency and performance by adjusting consistency levels based on their application’s requirements.

DataBend Features

Unified Batch and Stream Processing

DataBend supports both batch and streaming data processing, enabling users to build a wide range of applications that require real-time or historical data analysis.

Extensible Query Execution

DataBend’s DataFusion component provides a powerful and extensible query execution framework that supports both SQL and DataFrame-based query APIs.

Scalable Distributed Computing

With its Ballista compute platform, DataBend enables efficient and scalable execution of large-scale data processing tasks across a distributed cluster of nodes.

Flexible Storage

DataBend’s architecture allows users to configure the storage layer to work with various storage backends, providing flexibility and adaptability to different use cases.


Apache Cassandra Use Cases

Messaging and Social Media Platforms

Cassandra’s high availability and low-latency make it suitable for messaging and social media applications that require fast, consistent access to user data.

IoT and Distributed Systems

With its ability to handle large amounts of data across distributed nodes, Cassandra is an excellent choice for IoT applications and other distributed systems that generate massive data streams.

E-commerce

Cassandra is a good fit for E-commerce use cases because it has the ability to support things like real-time inventory status and it’s architecture also allows for reduced latency by allowing region specific data to be closer to users.

DataBend Use Cases

Real-Time Analytics

DataBend’s support for streaming data processing and its powerful query execution framework make it a suitable choice for building real-time analytics applications, such as log analysis, monitoring, and anomaly detection.

Data Warehousing

With its scalable distributed computing capabilities and flexible storage options, DataBend can be used to build large-scale data warehouses that can efficiently store and analyze vast amounts of structured and semi-structured data.

Machine Learning

DataBend’s ability to handle arge-scale data processing and its support for both batch and streaming data make it an excellent choice for machine learning applications. Users can leverage DataBend to preprocess, transform, and analyze data for feature engineering, model training, and evaluation, enabling them to derive valuable insights and build data-driven machine learning models.


Apache Cassandra Pricing Model

Apache Cassandra is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Cassandra cluster. Additionally, several managed Cassandra services, such as DataStax Astra and Amazon Keyspaces, offer different pricing models based on factors like data storage, request throughput, and support.

DataBend Pricing Model

As an open-source project, DataBend is freely available for use without any licensing fees or subscription costs. Users can deploy and manage DataBend on their own infrastructure or opt for cloud-based deployment using popular cloud providers. DataBend itself also provides a managed cloud service with free trial credits available.

Get started with InfluxDB for free

InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.