Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of DataBend and Kdb so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how DataBend and Kdb perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

DataBend vs Kdb Breakdown


 
Database Model

Data warehouse

Time series and columnar database

Architecture

DataBend can be run on your own infrastructure or using a managed service. It is designed as a cloud native system and is built to take advantage of many of the services available in cloud providers like AWS, Google Cloud, and Azure.

Kdb can be deployed on-premises, in the cloud, or as a hybrid solution.

License

Apache 2.0

Closed source

Use Cases

Data analytics, Data warehousing, Real-time analytics, Big data processing

High-frequency trading, financial services, market data analysis, IoT, real-time analytics

Scalability

Horizontally scalable with support for distributed computing

Highly scalable with multi-threading and multi-node support, suitable for large-scale data processing

DataBend Overview

DataBend is an open-source, cloud-native data processing and analytics platform designed to provide high-performance, cost-effective, and scalable solutions for big data workloads. The project is driven by a community of developers, researchers, and industry professionals aiming to create a unified data processing platform that combines batch and streaming processing capabilities with advanced analytical features. DataBend’s flexible architecture allows users to build a wide range of applications, from real-time analytics to large-scale data warehousing.

Kdb Overview

kdb+ is a high-performance columnar, time series database developed by Kx Systems. Released in 2003, kdb+ is designed to efficiently manage large volumes of data, with a primary focus on financial data, such as stock market trades and quotes. It is built on the principles of the q programming language, which is a descendant of APL and K. The database is known for its speed, scalability, and ability to process both real-time and historical data.


DataBend for Time Series Data

DataBend’s architecture and processing capabilities make it a suitable choice for working with time series data. Its support for both batch and streaming data processing allows users to ingest, store, and analyze time series data at scale. Additionally, DataBend’s integration with Apache Arrow and its powerful query execution framework enable efficient querying and analytics on time series data, making it a versatile choice for applications that require real-time insights and analytics.

Kdb for Time Series Data

kdb+ is designed to store time series data, making it a natural fit for applications that require high-speed querying and analysis of large volumes of data. Its columnar storage format allows for efficient compression and retrieval of time series data, while its q language provides a powerful and expressive means to manipulate and analyze the data. kdb+ is especially strong for financial data, though it can be used for other types of time series data as well.


DataBend Key Concepts

  • DataFusion: DataFusion is a core component of DataBend, providing an extensible query execution framework that supports both SQL and DataFrame-based query APIs.
  • Ballista: Ballista is a distributed compute platform within DataBend, built on top of DataFusion, that allows for efficient and scalable execution of large-scale data processing tasks.
  • Arrow: DataBend leverages Apache Arrow, an in-memory columnar data format, to enable efficient data exchange between components and optimize query performance.

Kdb Key Concepts

  • q language: A high-level, domain-specific programming language used for querying and manipulating data in kdb+. It combines SQL-like syntax with a functional programming style.
  • Columnar storage: kdb+ stores data in columns, rather than rows, which allows for faster querying and analysis of time series data.
  • Tables: kdb+ stores data in tables, which are similar to relational tables, but with a focus on columnar storage and time series data.
  • Splayed tables: A table storage format where each column is stored in a separate file, further enhancing query performance.


DataBend Architecture

DataBend is built on a cloud-native, distributed architecture that supports both NoSQL and SQL-like querying capabilities. Its modular design allows users to choose and combine components based on their specific use case and requirements. The core components of DataBend’s architecture include DataFusion, Ballista, and the storage layer. DataFusion is responsible for query execution and optimization, while Ballista enables distributed computing for large-scale data processing tasks. The storage layer in DataBend can be configured to work with various storage backends, such as object storage or distributed file systems.

Kdb Architecture

kdb+ is a columnar, time series database that employs a custom data model tailored for efficient storage and querying of time series data. It does not use traditional SQL, but instead relies on the q language for querying and data manipulation. The architecture of kdb+ is designed for both in-memory and on-disk storage, with the ability to scale horizontally across multiple machines. The primary components of kdb+ are the database engine, the q language interpreter, and the built-in web server.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

DataBend Features

Unified Batch and Stream Processing

DataBend supports both batch and streaming data processing, enabling users to build a wide range of applications that require real-time or historical data analysis.

Extensible Query Execution

DataBend’s DataFusion component provides a powerful and extensible query execution framework that supports both SQL and DataFrame-based query APIs.

Scalable Distributed Computing

With its Ballista compute platform, DataBend enables efficient and scalable execution of large-scale data processing tasks across a distributed cluster of nodes.

Flexible Storage

DataBend’s architecture allows users to configure the storage layer to work with various storage backends, providing flexibility and adaptability to different use cases.

Kdb Features

High performance

kdb+ is known for its speed and performance, with its columnar storage format and q language allowing for rapid querying and analysis of time series data.

Scalability

kdb+ is designed to scale horizontally, making it suitable for handling large volumes of data across multiple machines.

q language

The q language is a powerful, expressive, and high-level language used for querying and manipulating data in kdb+. It combines SQL-like syntax with a functional programming style.


DataBend Use Cases

Real-Time Analytics

DataBend’s support for streaming data processing and its powerful query execution framework make it a suitable choice for building real-time analytics applications, such as log analysis, monitoring, and anomaly detection.

Data Warehousing

With its scalable distributed computing capabilities and flexible storage options, DataBend can be used to build large-scale data warehouses that can efficiently store and analyze vast amounts of structured and semi-structured data.

Machine Learning

DataBend’s ability to handle arge-scale data processing and its support for both batch and streaming data make it an excellent choice for machine learning applications. Users can leverage DataBend to preprocess, transform, and analyze data for feature engineering, model training, and evaluation, enabling them to derive valuable insights and build data-driven machine learning models.

Kdb Use Cases

Financial data analysis

kdb+ is widely used in the financial industry for the storage and analysis of stock market trades, quotes, and other time series financial data.

High-frequency trading

kdb+ is a popular choice for high-frequency trading applications due to its high performance and ability to handle large volumes of real-time data.

IoT and sensor data

kdb+ can be used to store and analyze large volumes of time series data generated by IoT devices and sensors, though its primary focus remains on financial data.


DataBend Pricing Model

As an open-source project, DataBend is freely available for use without any licensing fees or subscription costs. Users can deploy and manage DataBend on their own infrastructure or opt for cloud-based deployment using popular cloud providers. DataBend itself also provides a managed cloud service with free trial credits available.

Kdb Pricing Model

kdb+ is a commercial product, with pricing depending on the deployment model and the number of cores or servers used. Kx Systems offers a free 32-bit version of kdb+ for non-commercial use, with limitations on the amount of memory that can be used. For commercial deployments and full-featured versions, users must contact Kx Systems for pricing details.

Get started with InfluxDB for free

InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.