Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of MongoDB and PostgreSQL so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how MongoDB and PostgreSQL perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

MongoDB vs PostgreSQL Breakdown


 
Database Model

Document database

Relational database

Architecture

MongoDB uses a flexible, JSON-like document model for storing data, which allows for dynamic schema changes without downtime. It supports ad hoc queries, indexing, and real-time aggregation. MongoDB can be deployed as a standalone server, in a replica set configuration for high availability, or as a sharded cluster for horizontal scaling. It is also available as a managed cloud service called MongoDB Atlas, which provides additional features like automated backups, monitoring, and global distribution.

PostgreSQL can be deployed on various platforms, such as on-premises, in virtual machines, or as a managed cloud service like Amazon RDS, Google Cloud SQL, or Azure Database for PostgreSQL.

License

SSPL for community edition, commercial licenses for other versions

PostgreSQL license (similar to MIT or BSD)

Use Cases

Content management systems, mobile applications, real-time analytics, IoT data management, e-commerce platforms

Web applications, geospatial data, business intelligence, analytics, content management systems, financial applications, scientific applications

Scalability

Horizontally scalable with support for data sharding, replication, and automatic load balancing

Supports vertical scaling, horizontal scaling through partitioning, sharding, and replication using available tools

MongoDB Overview

MongoDB is a popular, open-source NoSQL database launched in 2009. Designed to handle large volumes of unstructured and semi-structured data, MongoDB offers a flexible, schema-less data model, horizontal scalability, and high performance. Its ease of use, JSON-based document storage, and support for a wide range of programming languages have contributed to its widespread adoption across various industries and applications.

PostgreSQL Overview

PostgreSQL, also known as Postgres, is an open-source relational database management system that was first released in 1996. It has a long history of being a robust, reliable, and feature-rich database system, widely used in various industries and applications. PostgreSQL is known for its adherence to the SQL standard and extensibility, which allows users to define their own data types, operators, and functions. It is developed and maintained by a dedicated community of contributors and is available on multiple platforms, including Windows, Linux, and macOS.


MongoDB for Time Series Data

Although MongoDB is a general-purpose NoSQL database, it can be used for storing and processing time series data. The flexible data model of MongoDB allows for easy adaptation to the evolving structure of time series data, such as the addition of new metrics or the modification of existing ones. MongoDB provides built-in support for time-to-live (TTL) indexes, which automatically expire old data after a specified time period, making it suitable for managing large volumes of time series data with a limited storage capacity. MongoDB has also recently added a custom columnar storage engine and time series collection for time series use cases, meant to improve performance over the default MongoDB storage engine in terms of data compression and query performance.

PostgreSQL for Time Series Data

PostgreSQL can be used for time series data storage and analysis, although it was not specifically designed for this use case. With its rich set of data types, indexing options, and window function support, PostgreSQL can handle time series data. However, Postgres will not be as optimized for time series data as specialized time series databases when it comes to things like data compression, write throughput, and query speed. PostgreSQL also lacks a number of features that are useful for working with time series data like downsampling, retention policies, and custom SQL functions for time series data analysis.


MongoDB Key Concepts

Some key terminology and concepts specific to MongoDB include:

  • Database: A MongoDB database is a container for collections, which are groups of related documents.
  • Collection: A collection in MongoDB is analogous to a table in relational databases, holding a set of documents.
  • Document: A document in MongoDB is a single record, stored in a JSON-like format called BSON (Binary JSON). Documents within a collection can have different structures.
  • Field: A field is a key-value pair within a document, similar to an attribute or column in a relational database.
  • Index: An index in MongoDB is a data structure that improves the query performance on specific fields within a collection.

PostgreSQL Key Concepts

  • MVCC: Multi-Version Concurrency Control is a technique used by PostgreSQL to allow multiple transactions to be executed concurrently without conflicts or locking.
  • WAL: Write-Ahead Logging is a method used to ensure data durability by logging changes to a journal before they are written to the main data files.
  • TOAST: The Oversized-Attribute Storage Technique is a mechanism for storing large data values in a separate table to reduce the main table’s disk space consumption.


MongoDB Architecture

MongoDB’s architecture is centered around its flexible, document-based data model. As a NoSQL database, MongoDB supports a schema-less structure, which allows for the storage and querying of diverse data types, such as nested arrays and documents. MongoDB can be deployed as a standalone server, a replica set, or a sharded cluster. Replica sets provide high availability through automatic failover and data redundancy, while sharded clusters enable horizontal scaling and load balancing by distributing data across multiple servers based on a shard key.

PostgreSQL Architecture

PostgreSQL is a client-server relational database system that uses the SQL language for querying and manipulation. It employs a process-based architecture, with each connection to the database being handled by a separate server process. This architecture provides isolation between different users and sessions. PostgreSQL supports ACID transactions and uses a combination of MVCC, WAL, and other techniques to ensure data consistency, durability, and performance. It also supports various extensions and external modules to enhance its functionality.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

MongoDB Features

Flexible Data Model

MongoDB’s schema-less data model allows for the storage and querying of diverse data types, making it well-suited for handling complex and evolving data structures.

High Availability

MongoDB’s replica set feature ensures high availability through automatic failover and data redundancy.

Horizontal Scalability

MongoDB’s sharded cluster architecture enables horizontal scaling and load balancing, allowing it to handle large-scale data processing and querying.

PostgreSQL Features

Extensibility

PostgreSQL allows users to define custom data types, operators, and functions, making it highly adaptable to specific application requirements.

PostgreSQL has built-in support for full-text search, enabling users to perform complex text-based queries and analyses.

Geospatial support

With the PostGIS extension, PostgreSQL can store and manipulate geospatial data, making it suitable for GIS applications.


MongoDB Use Cases

Content Management Systems

MongoDB’s flexible data model makes it an ideal choice for content management systems, which often require the ability to store and manage diverse content types, such as articles, images, and videos. The schema-less nature of MongoDB allows for easy adaptation to changing content structures and requirements.

IoT Data Storage and Analytics

MongoDB’s support for high data volumes and horizontal scalability makes it suitable for storing and processing data generated by IoT devices, such as sensor readings and device logs. Its ability to index and query data efficiently allows for real-time analytics and monitoring of IoT devices.

E-commerce Platforms

MongoDB’s flexibility and performance features make it an excellent choice for e-commerce platforms, where diverse product information, customer data, and transaction records need to be stored and queried efficiently. The flexible data model enables easy adaptation to changes in product attributes and customer preferences, while the high availability and scalability features ensure a smooth and responsive user experience.

PostgreSQL Use Cases

Enterprise applications

PostgreSQL is a popular choice for large-scale enterprise applications due to its reliability, performance, and feature set.

GIS applications

With the PostGIS extension, PostgreSQL can be used for storing and analyzing geospatial data in applications like mapping, routing, and geocoding.

OLTP workloads

As a relational database, PostgreSQL is a good fit for pretty much any application that involves transactional workloads.


MongoDB Pricing Model

MongoDB offers various pricing options, including a free, open-source Community Edition and a commercial Enterprise Edition, which includes advanced features, management tools, and support. MongoDB Inc. also offers a fully managed cloud-based database-as-a-service, MongoDB Atlas, with a pay-as-you-go pricing model based on storage, data transfer, and compute resources. MongoDB Atlas offers a free tier with limited resources for users who want to try the service without incurring costs.

PostgreSQL Pricing Model

PostgreSQL is open source software, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed PostgreSQL server. Several cloud-based managed PostgreSQL services, such as Amazon RDS, Google Cloud SQL, and Azure Database for PostgreSQL, offer different pricing models based on factors like storage, computing resources, and support.

Get started with InfluxDB for free

InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.