Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Prometheus and QuestDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Prometheus and QuestDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Prometheus vs QuestDB Breakdown


 
Database Model

Time series database

Time series database

Architecture

Prometheus uses a pull-based model where it scrapes metrics from configured targets at given intervals. It stores time series data in a custom, efficient, local storage format, and supports multi-dimensional data collection, querying, and alerting. It can be deployed as a single binary on a server or on a container platform like Kubernetes.

QuestDB is designed for horizontal scaling, enabling you to distribute data and queries across multiple nodes for increased performance and availability. It can be deployed on-premises, in the cloud, or as a hybrid solution, depending on your infrastructure needs and preferences.

License

Apache 2.0

Apache 2.0

Use Cases

Monitoring, alerting, observability, system metrics, application metrics

Monitoring, observability, IoT, Real-time analytics, Financial services, High-frequency trading

Scalability

Prometheus is designed for reliability and can scale vertically (single node with increased resources) or through federation (hierarchical setup where Prometheus servers scrape metrics from other Prometheus servers)

High-performance with support for horizontal scaling and multi-threading

Prometheus Overview

Prometheus is an open-source monitoring and alerting toolkit initially developed at SoundCloud in 2012. It has since become a widely adopted monitoring solution and a part of the Cloud Native Computing Foundation (CNCF) project. Prometheus focuses on providing real-time insights and alerts for containerized and microservices-based environments. Its primary use case is monitoring infrastructure and applications, with an emphasis on reliability and scalability.

QuestDB Overview

QuestDB is an open-source relational column-oriented database designed specifically for time series and event data. It combines high-performance ingestion capabilities with SQL analytics, making it a powerful tool for managing and analyzing large volumes of time-based data. QuestDB addresses the challenges of handling high throughput and provides a simple way to analyze ingested data through SQL queries. It is well-suited for use cases such as financial market data and application metrics.


Prometheus for Time Series Data

Prometheus is specifically designed for time series data, as its primary focus is on monitoring and alerting based on the state of infrastructure and applications. It uses a pull-based model, where the Prometheus server scrapes metrics from the target systems at regular intervals. This model is suitable for monitoring dynamic environments, as it allows for automatic discovery and monitoring of new instances. However, Prometheus is not intended as a general-purpose time series database and might not be the best choice for high cardinality or long-term data storage.

QuestDB for Time Series Data

QuestDB excels in managing and analyzing time series data. With its high-performance ingestion capabilities, it can handle high data throughput, making it suitable for real-time data ingestion scenarios. QuestDB’s SQL extensions for time series enable users to perform real-time analytics and gain valuable insights from their time-stamped data. Whether it’s financial market data or application metrics, QuestDB simplifies the process of ingesting and analyzing time series data through its fast SQL queries and operational simplicity.


Prometheus Key Concepts

  • Metric: A numeric representation of a particular aspect of a system, such as CPU usage or memory consumption.
  • Time Series: A collection of data points for a metric, indexed by timestamp.
  • Label: A key-value pair that provides metadata and context for a metric, enabling more granular querying and aggregation.
  • PromQL: Prometheus uses its own query language called PromQL (Prometheus Query Language) for querying time series data and generating alerts.

QuestDB Key Concepts

  • Time Series: QuestDB focuses on time series data, which represents data points indexed by time. It is optimized for storing and processing time-stamped data efficiently.
  • Column-Oriented: QuestDB employs a column-oriented storage format, where data is organized and stored column by column rather than row by row. This format enables efficient compression and faster query performance.
  • SQL Extensions: QuestDB extends the SQL language with functionalities specifically tailored for time series data. These extensions facilitate real-time analytics and allow users to leverage familiar SQL constructs for querying time-based data.


Prometheus Architecture

Prometheus is a single-server, standalone monitoring system that uses a pull-based approach to collect metrics from target systems. It stores time series data in a custom, highly compressed, on-disk format, optimized for fast querying and low resource usage. The architecture of Prometheus is modular and extensible, with components like exporters, service discovery mechanisms, and integrations with other monitoring systems. As a non-distributed system, it lacks built-in clustering or horizontal scalability, but it supports federation, allowing multiple Prometheus servers to share and aggregate data.

QuestDB Architecture

QuestDB follows a hybrid architecture that combines features of columnar and row-based databases. It leverages a column-oriented storage format for efficient compression and query performance while retaining the ability to handle relational data with SQL capabilities. QuestDB supports both SQL and NoSQL-like functionalities, providing users with flexibility in their data modeling and querying approaches. The database consists of multiple components, including the ingestion engine, storage engine, and query engine, working together to ensure high-performance data ingestion and retrieval.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Prometheus Features

Pull-based Model

Prometheus collects metrics by actively scraping targets, enabling automatic discovery and monitoring of dynamic environments.

PromQL

The powerful Prometheus Query Language allows for expressive and flexible querying of time series data.

Alerting

Prometheus supports alerting based on user-defined rules and integrates with various alert management and notification systems.

QuestDB Features

High-Performance Ingestion

QuestDB is optimized for high throughput ingestion, allowing users to efficiently ingest large volumes of time series data at high speeds.

Fast SQL Queries

QuestDB provides fast SQL queries for analyzing time series data. It extends the SQL language with time series-specific functionalities to assist with real-time analytics.

Operational Simplicity

QuestDB aims to provide a user-friendly experience with operational simplicity. It supports schema-agnostic ingestion using popular protocols such as InfluxDB line protocol and PostgreSQL wire protocol. Additionally, a REST API is available for bulk imports and exports, simplifying data management tasks.


Prometheus Use Cases

Infrastructure Monitoring

Prometheus is widely used for monitoring the health and performance of containerized and microservices-based infrastructure, including Kubernetes and Docker environments.

Application Performance Monitoring (APM)

Prometheus can collect custom application metrics using client libraries and monitor application performance in real-time.

Alerting and Anomaly Detection

Prometheus enables organizations to set up alerts based on specific thresholds or conditions, helping them identify and respond to potential issues or anomalies quickly.

QuestDB Use Cases

Financial Market Data

QuestDB is well-suited for managing and analyzing financial market data. Its high-performance ingestion and fast SQL queries enable efficient processing and analysis of large volumes of market data in real time.

Application Metrics

QuestDB can be used for collecting and analyzing application metrics. Its ability to handle high data throughput and provide real-time analytics capabilities makes it suitable for monitoring and analyzing performance metrics, logs, and other application-related data.

IoT Data Analysis

QuestDB’s high-performance ingestion and time series analytics capabilities make it a valuable tool for analyzing IoT sensor data.


Prometheus Pricing Model

Prometheus is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Prometheus server. Additionally, several cloud-based managed Prometheus services, such as Grafana Cloud and Weave Cloud, offer different pricing models based on factors like data retention, query rate, and support.

QuestDB Pricing Model

QuestDB is an open-source project released under the Apache 2 License. It is freely available for usage and does not require any licensing fees. Users can access the source code on GitHub and deploy QuestDB on their own infrastructure without incurring direct costs. QuestDB also offers a managed cloud service.

Get started with InfluxDB for free

InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.