Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of RRDtool and TDengine so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how RRDtool and TDengine perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

RRDtool vs TDengine Breakdown


 
Database Model

Time series database

Time series database

Architecture

RRDtool is a single-node, non-distributed database generally deployed on a single machine

TDengine can be deployed on-premises, in the cloud, or as a hybrid solution, allowing flexibility in deployment and management.

License

GNU GPLv2

AGPL 3.0

Use Cases

Monitoring, observability, Network performance tracking, System metrics, Log data storage

IoT data storage, industrial monitoring, smart energy, smart home, monitoring and observability

Scalability

Limited scalability- more suitable for small to medium-sized datasets

Horizontally scalable with clustering and built-in load balancing. TDengine also provides decoupled compute and storage as well as object storage support for data tiering in some versions

RRDtool Overview

RRDtool, short for Round-Robin Database Tool, is an open-source, high-performance data logging and graphing system designed to handle time series data. Created by Tobias Oetiker in 1999, RRDtool is specifically built for storing and visualizing time-series data, such as network bandwidth, temperatures, or CPU load. Its primary feature is the efficient storage of data points, using a fixed-size database that automatically aggregates and archives older data points, ensuring that the database size remains constant over time.

TDengine Overview

TDengine is a high-performance, open source time series database designed to handle massive amounts of time series data efficiently. It was created by TAOS Data in 2017 and is specifically designed for Internet of Things (IoT), Industrial IoT, and IT infrastructure monitoring use cases. TDengine has a unique hybrid architecture that combines the advantages of both relational and NoSQL databases, providing high performance, easy-to-use SQL for querying, and flexible data modeling capabilities.


RRDtool for Time Series Data

RRDtool was created for time series data storage and visualization, making it a great fit for applications that require efficient handling of this type of data. Its round-robin database structure ensures constant storage space usage while providing automatic data aggregation and archiving. However, RRDtool may not be suitable for applications that require complex queries or relational data storage, as its focus is primarily on time series data.

TDengine for Time Series Data

TDengine is designed from the ground up as a time series database, so it will be a good fit for most use cases that heavily involve storing and analyzing time series data.


RRDtool Key Concepts

  • Round-robin database: A fixed-size database that stores time-series data using a circular buffer, overwriting older data as new data is added.
  • RRD file: A single file that contains all the configuration and data for an RRDtool database.
  • Consolidation function: A function that aggregates multiple data points into a single data point, such as AVERAGE, MIN, MAX, or LAST.

TDengine Key Concepts

  • Super Table: A template for creating multiple tables with the same schema. It’s similar to the concept of table inheritance in some other databases.
  • Sub Table: A table created based on a Super Table, inheriting its schema. Sub Tables can have additional tags for categorization and querying purposes.
  • Tag: A metadata attribute used to categorize and filter Sub Tables in a Super Table. Tags are indexed and optimized for efficient querying.


RRDtool Architecture

RRDtool is a specialized time series database that does not use SQL or a traditional relational data model. Instead, it employs a round-robin database structure, with data points stored in a fixed-size, circular buffer. RRDtool is a command-line tool that can be used to create and update RRD files, as well as generate graphs and reports from the stored data. It can be integrated with various scripting languages, such as Perl, Python, and Ruby, through available bindings.

TDengine Architecture

TDengine uses a cloud native architecture that combines the advantages of relational databases (support for SQL querying) and NoSQL databases (scalability and flexibility).

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

RRDtool Features

Efficient Data Storage

RRDtool’s round-robin database structure ensures constant storage space usage, automatically aggregating and archiving older data points.

Graphing

RRDtool provides powerful graphing capabilities, allowing users to generate customizable graphs and reports from the stored time series data.

Cross-Platform Support

RRDtool is available on various platforms, including Linux, Unix, macOS, and Windows.

TDengine Features

Data ingestion

TDengine supports high-speed data ingestion, with the ability to handle millions of data points per second. It supports batch and individual data insertion.

Data querying

TDengine provides ANSI SQL support with additional that allows users to easily query time series data using familiar SQL syntax. It supports various aggregation functions, filtering, and joins.

Data retention and compression

TDengine automatically compresses data to save storage space and provides data retention policies to automatically delete old data.


RRDtool Use Cases

Network Monitoring

RRDtool is often used in network monitoring applications to store and visualize metrics such as bandwidth usage, latency, and packet loss.

Environmental Monitoring

RRDtool can be used to track and visualize environmental data, such as temperature, humidity, and air pressure, over time.

System Performance Monitoring

RRDtool is suitable for storing and displaying system performance metrics, like CPU usage, memory consumption, and disk I/O, for server and infrastructure monitoring.

TDengine Use Cases

IoT data storage and analysis

TDengine is designed to handle massive amounts of time series data generated by IoT devices. Its high-performance ingestion, querying, and storage capabilities make it a suitable choice for IoT data storage and analysis.

Industrial IoT monitoring

TDengine can be used to store and analyze data from industrial IoT sensors and devices, helping organizations monitor equipment performance, detect anomalies, and optimize operations.

Infrastructure Monitoring

TDengine can be used to collect and analyze time series data from IT infrastructure components, such as servers, networks, and applications, facilitating real-time monitoring, alerting, and performance optimization.


RRDtool Pricing Model

RRDtool is an open-source software, freely available for use under the GNU General Public License. Users can download, use, and modify the software at no cost. There are no commercial licensing options or paid support services offered directly by the project.

TDengine Pricing Model

TDengine is open source and free to use under the AGPLv3 license. TDengine also offers commercial licenses and enterprise support options for organizations that require additional features, support, or compliance with specific licensing requirements.

Get started with InfluxDB for free

InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.