Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of InfluxDB and MongoDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how InfluxDB and MongoDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

InfluxDB vs MongoDB Breakdown


 
Database Model

Time Series Database

Document database

Architecture

Cloud native architecture that can be used as a managed cloud service or self-managed on your own hardware locally

MongoDB uses a flexible, JSON-like document model for storing data, which allows for dynamic schema changes without downtime. It supports ad hoc queries, indexing, and real-time aggregation. MongoDB can be deployed as a standalone server, in a replica set configuration for high availability, or as a sharded cluster for horizontal scaling. It is also available as a managed cloud service called MongoDB Atlas, which provides additional features like automated backups, monitoring, and global distribution.

License

MIT

SSPL for community edition, commercial licenses for other versions

Use Cases

Monitoring, observability, IoT, real-time analytics

Content management systems, mobile applications, real-time analytics, IoT data management, e-commerce platforms

Scalability

Horizontally scalable with decoupled storage and compute with InfluxDB 3.0 delivers up to 90% reduced storage costs( benchmarks )

Horizontally scalable with support for data sharding, replication, and automatic load balancing

InfluxDB Overview

InfluxDB is a high-performance, time series database capable of storing any form of time series data, such as metrics, events, logs and traces. InfluxDB is developed by InfluxData and first released in 2013. InfluxDB is an open source database written in Go, with a focus on performance, scalability, and developer productivity. The database is optimized for handling time series data at scale, making it a popular choice for use cases involving monitoring performance metrics, IoT data, and real-time analytics.

InfluxDB 3.0 is the newest version of InfluxDB, currently available in InfluxDB Cloud Serverless and InfluxDB Cloud Dedicated. Built in Rust, a modern programming language designed for performance, safety, and memory management. InfluxDB also features a decoupled architecture that allows compute and storage to be scaled independently. InfluxDB 3.0 provides query support for both SQL and InfluxQL (custom SQL-like query language with added support for time-based functions).

MongoDB Overview

MongoDB is a popular, open-source NoSQL database launched in 2009. Designed to handle large volumes of unstructured and semi-structured data, MongoDB offers a flexible, schema-less data model, horizontal scalability, and high performance. Its ease of use, JSON-based document storage, and support for a wide range of programming languages have contributed to its widespread adoption across various industries and applications.


InfluxDB for Time Series Data

InfluxDB is specifically designed for time series data, making it well-suited for applications that involve tracking and analyzing data points over time. It excels in scenarios where data is being written continuously at high volumes while users also require the ability to query that data quickly after ingest for monitoring and real time analytics use cases.

MongoDB for Time Series Data

Although MongoDB is a general-purpose NoSQL database, it can be used for storing and processing time series data. The flexible data model of MongoDB allows for easy adaptation to the evolving structure of time series data, such as the addition of new metrics or the modification of existing ones. MongoDB provides built-in support for time-to-live (TTL) indexes, which automatically expire old data after a specified time period, making it suitable for managing large volumes of time series data with a limited storage capacity. MongoDB has also recently added a custom columnar storage engine and time series collection for time series use cases, meant to improve performance over the default MongoDB storage engine in terms of data compression and query performance.


InfluxDB Key Concepts

  • Columnar storage: InfluxDB stores data in a column-oriented format, using Parquet for persistent file storage and Apache Arrow as the in-memory representation of data. Columnar storage results in better data compression and faster queries for analytics workloads.
  • Data Model: The InfluxDB data model will be familiar to anyone who has worked with other database systems. At the highest level are buckets, which are similar to what other systems call databases. InfluxDB measurements are synonymous with tables. Specific data points for a measurement contain tags and values. Tags are used as part of the primary key for querying data and should be used for identifying information used for filtering during queries. InfluxDB is schemaless so new fields can be added without requiring migrations or modifying a schema.
  • Integrations: InfluxDB is built to be flexible and fit into your application’s architecture. One key aspect of this is the many ways InfluxDB makes it easy to read and write data. To start, all database functionality can be accessed via HTTP API or with the InfluxDB CLI. For writing data InfluxDB created Telegraf, a tool that can collect data from hundreds of different sources via plugins and write that data to InfluxDB. Client libraries are also available for the most popular programming languages to allow writing and querying data.
  • Decoupled architecture: InfluxDB 3.0 features a decoupled architecture which allows query compute, data ingestion, and storage to be scaled independently. This allows InfluxDB to be fine-tuned for your use case and results in significant cost savings.
  • Query Languages: InfluxDB can be queried using standard SQL or InfluxQL, an SQL dialect with a number of specialized functions useful for working with time series data.
  • Retention Policies: InfluxDB allows you to define retention policies that determine how long data is stored before being automatically deleted. This is useful for managing the storage of high volume time series data.

MongoDB Key Concepts

Some key terminology and concepts specific to MongoDB include:

  • Database: A MongoDB database is a container for collections, which are groups of related documents.
  • Collection: A collection in MongoDB is analogous to a table in relational databases, holding a set of documents.
  • Document: A document in MongoDB is a single record, stored in a JSON-like format called BSON (Binary JSON). Documents within a collection can have different structures.
  • Field: A field is a key-value pair within a document, similar to an attribute or column in a relational database.
  • Index: An index in MongoDB is a data structure that improves the query performance on specific fields within a collection.


InfluxDB Architecture

At a high level, InfluxDB’s architecture is designed to optimize storage and query performance for time series data. The exact architecture of InfluxDB will vary slightly depending on the version and how you deploy InfluxDB.

InfluxDB 3.0’s architecture can be broken down into four key components that operate almost independently from each other, allowing for InfluxDB to be extremely flexible in terms of configuration. These components are are data ingest, data querying, data compaction, and garbage collection. Data is written via the ingesters with millisecond latency. This data can be queried almost immediately by the data queriers while in the background the compactor takes the newly written data files and combines them into larger files that will be sent to object storage. The garbage collector is responsible for data retention and space reclamations by scheduling soft and hard deletion of data.

They key part of InfluxDB’s architecture is the separation of the ingest and query components, which allows each to be scaled independently depending on the current write and query workload. The querier being able to seamlessly pull in recently written data from the ingesters as well as from object storage allows data to be stored cheaply without increasing query latency.

MongoDB Architecture

MongoDB’s architecture is centered around its flexible, document-based data model. As a NoSQL database, MongoDB supports a schema-less structure, which allows for the storage and querying of diverse data types, such as nested arrays and documents. MongoDB can be deployed as a standalone server, a replica set, or a sharded cluster. Replica sets provide high availability through automatic failover and data redundancy, while sharded clusters enable horizontal scaling and load balancing by distributing data across multiple servers based on a shard key.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

InfluxDB Features

High-performance storage and querying

InfluxDB is optimized for time series data, providing high-performance storage and querying capabilities. In terms of storage InfluxDB is able to scale effortlessly due to its decoupled architecture. Object storage is used to persist data and query nodes can be scaled independently to improve query performance and capacity.

Compared to previous versions of InfluxDB, the newly released InfluxDB 3.0 compresses data 4.5x more effectively and queries are 2.5-45x faster depending on the type of query.

Retention policies

InfluxDB allows users to define retention policies that automatically delete data points after a specified duration. This feature helps manage data storage costs and ensures that only relevant data is retained.

Data compression

InfluxDB’s storage engine automatically compacts data on disk, reducing storage requirements and improving query performance. With InfluxDB 3.0 data is stored using the Parquet file format to get even higher compression ratios on time series data.

Horizontal scaling and clustering

InfluxDB supports horizontal scaling and clustering, allowing users to distribute data across multiple nodes for increased performance and fault tolerance.

Data tiering

InfluxDB 3.0 is able to seamlessly move data from cheap object storage into faster storage for low latency queries without expensive SSD or high amounts of RAM utilization. This allows users to store data for longer at higher frequencies while still saving in storage costs.

MongoDB Features

Flexible Data Model

MongoDB’s schema-less data model allows for the storage and querying of diverse data types, making it well-suited for handling complex and evolving data structures.

High Availability

MongoDB’s replica set feature ensures high availability through automatic failover and data redundancy.

Horizontal Scalability

MongoDB’s sharded cluster architecture enables horizontal scaling and load balancing, allowing it to handle large-scale data processing and querying.


InfluxDB Use Cases

Monitoring and alerting

InfluxDB is widely used for monitoring and alerting purposes, as it can efficiently store and process time series data generated by various systems, applications, and devices. With its high-performance query engine and integration with visualization tools like Grafana, users can create real-time dashboards and set up alerts based on specific conditions or thresholds.

IoT data storage and analysis

Due to its high write and query performance, InfluxDB is an ideal choice for storing and analyzing IoT data generated by sensors, devices, and applications. Users can leverage InfluxDB’s scalability and retention policies to manage large volumes of time series data, and use its powerful query languages to gain insights into the IoT ecosystem.

Real-time analytics

InfluxDB’s performance and flexibility make it suitable for real-time analytics use cases, such as tracking user behavior, monitoring application performance, and analyzing financial data. With its support for InfluxQL and SQL, users can perform complex data analysis and aggregation in real-time, enabling them to make data-driven decisions.

MongoDB Use Cases

Content Management Systems

MongoDB’s flexible data model makes it an ideal choice for content management systems, which often require the ability to store and manage diverse content types, such as articles, images, and videos. The schema-less nature of MongoDB allows for easy adaptation to changing content structures and requirements.

IoT Data Storage and Analytics

MongoDB’s support for high data volumes and horizontal scalability makes it suitable for storing and processing data generated by IoT devices, such as sensor readings and device logs. Its ability to index and query data efficiently allows for real-time analytics and monitoring of IoT devices.

E-commerce Platforms

MongoDB’s flexibility and performance features make it an excellent choice for e-commerce platforms, where diverse product information, customer data, and transaction records need to be stored and queried efficiently. The flexible data model enables easy adaptation to changes in product attributes and customer preferences, while the high availability and scalability features ensure a smooth and responsive user experience.


InfluxDB Pricing Model

InfluxDB offers several pricing options, including a free open source version, a cloud-based offering, and an enterprise edition for on-premises deployment:

  • InfluxDB Cloud Serverless: InfluxDB Cloud Serverless is a managed, cloud-based offering with a pay-as-you-go pricing model. It provides additional features, such as monitoring, alerting, and data visualization. InfluxDB Cloud is available across all major cloud providers.
  • InfluxDB Cloud Dedicated - This is a managed cloud solution that provides an isolated InfluxDB instance on dedicated hardware for use cases that require isolation or benefit from being able to specify and fine-tune hardware configuration.
  • InfluxDB Enterprise: On-prem solution with enterprise features for security and support for clustering and other horizontal scaling options.
  • InfluxDB Open Source: The open source version of InfluxDB is free to use and provides the core functionality of the database.

MongoDB Pricing Model

MongoDB offers various pricing options, including a free, open-source Community Edition and a commercial Enterprise Edition, which includes advanced features, management tools, and support. MongoDB Inc. also offers a fully managed cloud-based database-as-a-service, MongoDB Atlas, with a pay-as-you-go pricing model based on storage, data transfer, and compute resources. MongoDB Atlas offers a free tier with limited resources for users who want to try the service without incurring costs.

Get started with InfluxDB for free

InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.