Kibana and Clickhouse Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Kibana and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Kibana plugin enables users to obtain status metrics from Kibana, a data visualization tool for Elasticsearch. By connecting to the Kibana API, this plugin captures various performance indicators and the health status of the Kibana service.

Telegraf’s SQL plugin sends collected metrics to an SQL database using a straightforward table schema and dynamic column generation. When configured for ClickHouse, it adjusts DSN formatting and type conversion settings to ensure seamless data integration.

Integration details

Kibana

The Kibana input plugin is designed to query the Kibana API to gather service status information. This plugin allows users to monitor their Kibana instances effectively by pulling metrics related to its health, performance, and operational metrics. By querying the Kibana API, this plugin provides insights into key parameters such as the current health status (green, yellow, red), uptime, heap memory usage, and request performance metrics. This information is crucial for administrators and operational teams looking to maintain optimal system performance and quickly address any issues that may arise. The configuration settings allow for flexible integration with other components in a microservices architecture, facilitating comprehensive monitoring solutions aligned with organizational needs, making it an essential tool for those leveraging the Elastic Stack in their infrastructure.

Clickhouse

Telegraf’s SQL plugin is engineered to write metric data into an SQL database by dynamically creating tables and columns based on incoming metrics. When configured for ClickHouse, it utilizes the clickhouse-go v1.5.4 driver, which employs a unique DSN format and a set of specialized type conversion rules to map Telegraf’s data types directly to ClickHouse’s native types. This approach ensures optimal storage and retrieval performance in high-throughput environments, making it well-suited for real-time analytics and large-scale data warehousing. The dynamic schema creation and precise type mapping enable detailed time-series data logging, crucial for monitoring modern, distributed systems.

Configuration

Kibana

[[inputs.kibana]]
  ## Specify a list of one or more Kibana servers
  servers = ["http://localhost:5601"]

  ## Timeout for HTTP requests
  timeout = "5s"

  ## HTTP Basic Auth credentials
  # username = "username"
  # password = "pa$$word"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false
 
  ## If 'use_system_proxy' is set to true, Telegraf will check env vars such as
  ## HTTP_PROXY, HTTPS_PROXY, and NO_PROXY (or their lowercase counterparts).
  ## If 'use_system_proxy' is set to false (default) and 'http_proxy_url' is
  ## provided, Telegraf will use the specified URL as HTTP proxy.
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"

Clickhouse

[[outputs.sql]]
  ## Database driver
  ## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
  driver = "clickhouse"

  ## Data source name
  ## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
  ## Example DSN: "tcp://localhost:9000?debug=true"
  data_source_name = "tcp://localhost:9000?debug=true"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion for ClickHouse.
  ## The conversion maps Telegraf metric types to ClickHouse native data types.
  [outputs.sql.convert]
    conversion_style = "literal"
    integer          = "Int64"
    text             = "String"
    timestamp        = "DateTime"
    defaultvalue     = "String"
    unsigned         = "UInt64"
    bool             = "UInt8"
    real             = "Float64"

Input and output integration examples

Kibana

  1. Kibana Health Monitoring: Implement a dedicated dashboard to periodically poll the metrics from Kibana. This setup allows operations teams to have a real-time view of their Kibana instances’ health and metrics, enabling proactive performance management and immediate response capabilities in case of service degradation or failure.

  2. Automated Alerting System: Integrate the metrics gathered from the Kibana plugin with an alerting system using tools like Prometheus or PagerDuty. By setting thresholds for key metrics (e.g., response time or heap usage), this integration can automatically notify the relevant personnel of performance issues, thereby reducing downtime and improving the response time for operational issues.

  3. Resource Optimization Strategy: Use the memory usage and response time metrics collected by this plugin to formulate strategies for optimizing resource allocation in Kubernetes or other orchestration platforms. By analyzing trends over time, teams can adjust resource limits and requests dynamically, ensuring that Kibana instances function efficiently without over-provisioning resources.

Clickhouse

  1. Real-Time Analytics for High-Volume Data: Use the plugin to feed streaming metrics from large-scale systems into ClickHouse. This setup supports ultra-fast query performance and near real-time analytics, ideal for monitoring high-traffic applications.

  2. Time-Series Data Warehousing: Integrate the plugin with ClickHouse to create a robust time-series data warehouse. This use case allows organizations to store detailed historical metrics and perform complex queries for trend analysis and capacity planning.

  3. Scalable Monitoring in Distributed Environments: Leverage the plugin to dynamically create tables per metric type in ClickHouse, making it easier to manage and query data from a multitude of distributed systems without prior schema definitions.

  4. Optimized Storage for IoT Deployments: Deploy the plugin to ingest data from IoT sensors into ClickHouse. Its efficient schema creation and native type mapping facilitate the handling of massive volumes of data, enabling real-time monitoring and predictive maintenance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration