HTTP and InfluxDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The HTTP plugin allows for the collection of metrics from specified HTTP endpoints, handling various data formats and authentication methods.

The InfluxDB plugin writes metrics to the InfluxDB HTTP or UDP service. It provides options to configure how metrics are sent and stored in the database.

Integration details

HTTP

The HTTP plugin collects metrics from one or more HTTP(S) endpoints, which should have metrics formatted in one of the supported input data formats. It also supports secrets from secret-stores for various authentication options and includes globally supported configuration settings.

InfluxDB

This plugin supports writing metrics to InfluxDB over HTTP or UDP. It also includes options for authentication using usernames and passwords, as well as various configurations for timeouts, database management, and writing metrics.

Configuration

HTTP

[[inputs.http]]
  ## One or more URLs from which to read formatted metrics.
  urls = [
    "http://localhost/metrics",
    "http+unix:///run/user/420/podman/podman.sock:/d/v4.0.0/libpod/pods/json"
  ]

  ## HTTP method
  # method = "GET"

  ## Optional HTTP headers
  # headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP entity-body to send with POST/PUT requests.
  # body = ""

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "identity"

  ## Optional Bearer token settings to use for the API calls.
  ## Use either the token itself or the token file if you need a token.
  # token = "eyJhbGc...Qssw5c"
  # token_file = "/path/to/file"

  ## Optional HTTP Basic Auth Credentials
  # username = "username"
  # password = "pa$$word"

  ## OAuth2 Client Credentials. The options 'client_id', 'client_secret', and 'token_url' are required to use OAuth2.
  # client_id = "clientid"
  # client_secret = "secret"
  # token_url = "https://indentityprovider/oauth2/v1/token"
  # scopes = ["urn:opc:idm:__myscopes__"]

  ## HTTP Proxy support
  # use_system_proxy = false
  # http_proxy_url = ""

  ## Optional TLS Config
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Password for the key file if it is encrypted
  # tls_key_pwd = ""
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## List of ciphers to accept, by default all secure ciphers will be accepted
  ## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
  ## Use "all", "secure" and "insecure" to add all support ciphers, secure
  ## suites or insecure suites respectively.
  # tls_cipher_suites = ["secure"]
  ## Renegotiation method, "never", "once" or "freely"
  # tls_renegotiation_method = "never"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional Cookie authentication
  # cookie_auth_url = "https://localhost/authMe"
  # cookie_auth_method = "POST"
  # cookie_auth_username = "username"
  # cookie_auth_password = "pa$$word"
  # cookie_auth_headers = { Content-Type = "application/json", X-MY-HEADER = "hello" }
  # cookie_auth_body = '{"username": "user", "password": "pa$$word", "authenticate": "me"}'
  ## cookie_auth_renewal not set or set to "0" will auth once and never renew the cookie
  # cookie_auth_renewal = "5m"

  ## Amount of time allowed to complete the HTTP request
  # timeout = "5s"

  ## List of success status codes
  # success_status_codes = [200]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  # data_format = "influx"

InfluxDB

[[outputs.influxdb]]
  ## The full HTTP or UDP URL for your InfluxDB instance.
  ##
  ## Multiple URLs can be specified for a single cluster, only ONE of the
  ## urls will be written to each interval.
  # urls = ["unix:///var/run/influxdb.sock"]
  # urls = ["udp://127.0.0.1:8089"]
  # urls = ["http://127.0.0.1:8086"]

  ## Local address to bind when connecting to the server
  ## If empty or not set, the local address is automatically chosen.
  # local_address = ""

  ## The target database for metrics; will be created as needed.
  ## For UDP url endpoint database needs to be configured on server side.
  # database = "telegraf"

  ## The value of this tag will be used to determine the database.  If this
  ## tag is not set the 'database' option is used as the default.
  # database_tag = ""

  ## If true, the 'database_tag' will not be included in the written metric.
  # exclude_database_tag = false

  ## If true, no CREATE DATABASE queries will be sent.  Set to true when using
  ## Telegraf with a user without permissions to create databases or when the
  ## database already exists.
  # skip_database_creation = false

  ## Name of existing retention policy to write to.  Empty string writes to
  ## the default retention policy.  Only takes effect when using HTTP.
  # retention_policy = ""

  ## The value of this tag will be used to determine the retention policy.  If this
  ## tag is not set the 'retention_policy' option is used as the default.
  # retention_policy_tag = ""

  ## If true, the 'retention_policy_tag' will not be included in the written metric.
  # exclude_retention_policy_tag = false

  ## Write consistency (clusters only), can be: "any", "one", "quorum", "all".
  ## Only takes effect when using HTTP.
  # write_consistency = "any"

  ## Timeout for HTTP messages.
  # timeout = "5s"

  ## HTTP Basic Auth
  # username = "telegraf"
  # password = "metricsmetricsmetricsmetrics"

  ## HTTP User-Agent
  # user_agent = "telegraf"

  ## UDP payload size is the maximum packet size to send.
  # udp_payload = "512B"

  ## Optional TLS Config for use on HTTP connections.
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## HTTP Proxy override, if unset values the standard proxy environment
  ## variables are consulted to determine which proxy, if any, should be used.
  # http_proxy = "http://corporate.proxy:3128"

  ## Additional HTTP headers
  # http_headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "gzip"

  ## When true, Telegraf will output unsigned integers as unsigned values,
  ## i.e.: "42u".  You will need a version of InfluxDB supporting unsigned
  ## integer values.  Enabling this option will result in field type errors if
  ## existing data has been written.
  # influx_uint_support = false

  ## When true, Telegraf will omit the timestamp on data to allow InfluxDB
  ## to set the timestamp of the data during ingestion. This is generally NOT
  ## what you want as it can lead to data points captured at different times
  ## getting omitted due to similar data.
  # influx_omit_timestamp = false

Input and output integration examples

HTTP

  1. Collecting Metrics from Localhost: The plugin can fetch metrics from an HTTP endpoint like http://localhost/metrics, allowing for easy local monitoring.
  2. Using Unix Domain Sockets: You can specify metrics collection from services over Unix domain sockets by using the http+unix scheme, for example, http+unix:///path/to/service.sock:/api/endpoint.

InfluxDB

  1. Metric Aggregation: Use the InfluxDB output plugin to aggregate metrics from various sources, such as system performance data, and send it to InfluxDB for centralized monitoring and analysis.

  2. Real-Time Data Ingestion: Set up the plugin to send real-time data from your application to InfluxDB, enabling your development team to dynamically monitor performance and user analytics.

  3. Multi-Tenancy Support: You can configure multiple [[outputs.influxdb]] sections to send data from different applications to separate InfluxDB instances, effectively supporting multi-tenancy in your monitoring architecture.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations, including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration

MQTT and InfluxDB Integration

The MQTT plugin is a service input for reading metrics from specified MQTT topics. It supports various data formats and configuration options for reliable message consumption.

View Integration