Nvidia SMI and Graylog Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Nvidia SMI and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Nvidia SMI Plugin enables the retrieval of detailed statistics about NVIDIA GPUs attached to the host system, providing essential insights for performance monitoring.

The Graylog plugin allows you to send Telegraf metrics to a Graylog server, utilizing the GELF format for structured logging.

Integration details

Nvidia SMI

The Nvidia SMI Plugin is designed to gather metrics regarding the performance and status of NVIDIA GPUs on the host machine. By leveraging the capabilities of the nvidia-smi command-line tool, this plugin pulls crucial information such as GPU memory utilization, temperature, fan speed, and various performance metrics. This data is essential for monitoring GPU health and performance in real-time, particularly in environments where GPU performance directly impacts computing tasks, such as machine learning, 3D rendering, and high-performance computing. The plugin provides flexibility by allowing users to specify the path to the nvidia-smi binary and configure polling timeouts, accommodating both Linux and Windows systems where the nvidia-smi tool is commonly located. With its ability to collect detailed statistics on each GPU, this plugin becomes a vital resource for any infrastructure relying on NVIDIA hardware, facilitating proactive management and performance tuning.

Graylog

The Graylog plugin is designed for sending metrics to a Graylog instance using the GELF (Graylog Extended Log Format) format. GELF helps standardize the logging data, making it easier for systems to send and analyze logs. The plugin adheres to the GELF specification, which lays out requirements for specific fields within the payload. Notably, the timestamp must be in UNIX format, and if present, the plugin sends the timestamp as-is to Graylog without alterations. If omitted, it automatically generates a timestamp. Additionally, any extra fields not explicitly defined by the spec will be prefixed with an underscore, helping to keep the data organized and compliant with GELF’s requirements. This capability is particularly valuable for users monitoring applications and infrastructure in real-time, as it allows for seamless integration and improved visibility across multiple systems.

Configuration

Nvidia SMI

[[inputs.nvidia_smi]]
  ## Optional: path to nvidia-smi binary, defaults "/usr/bin/nvidia-smi"
  ## We will first try to locate the nvidia-smi binary with the explicitly specified value (or default value),
  ## if it is not found, we will try to locate it on PATH(exec.LookPath), if it is still not found, an error will be returned
  # bin_path = "/usr/bin/nvidia-smi"

  ## Optional: timeout for GPU polling
  # timeout = "5s"

Graylog

[[outputs.graylog]]
  ## Endpoints for your graylog instances.
  servers = ["udp://127.0.0.1:12201"]

  ## Connection timeout.
  # timeout = "5s"

  ## The field to use as the GELF short_message, if unset the static string
  ## "telegraf" will be used.
  ##   example: short_message_field = "message"
  # short_message_field = ""

  ## According to GELF payload specification, additional fields names must be prefixed
  ## with an underscore. Previous versions did not prefix custom field 'name' with underscore.
  ## Set to true for backward compatibility.
  # name_field_no_prefix = false

  ## Connection retry options
  ## Attempt to connect to the endpoints if the initial connection fails.
  ## If 'false', Telegraf will give up after 3 connection attempt and will
  ## exit with an error. If set to 'true', the plugin will retry to connect
  ## to the unconnected endpoints infinitely.
  # connection_retry = false
  ## Time to wait between connection retry attempts.
  # connection_retry_wait_time = "15s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Input and output integration examples

Nvidia SMI

  1. Real-Time GPU Monitoring for ML Training: Continuously monitor the GPU utilization and memory usage during machine learning model training. This enables data scientists to ensure that their GPUs are not being overutilized or underutilized, optimizing resource allocation and reviewing performance bottlenecks in real-time.

  2. Automated Alerts for Overheating GPUs: Implement a system using the Nvidia SMI plugin to track GPU temperatures and set alerts for instances where temperatures exceed safe thresholds. This proactive monitoring can prevent hardware damage and improve system reliability by alerting administrators to potential cooling issues before they result in failure.

  3. Performance Baselines for GPU Resources: Establish baseline performance metrics for your GPU resources. By regularly collecting data and analyzing trends in GPU usage, organizations can identify anomalies and optimize their workloads accordingly, leading to enhanced operational efficiency.

  4. Dockerized GPU Usage Insights: In a containerized environment, use the plugin to monitor GPU performance from within a Docker container. This allows developers to track GPU performance of their applications in production, facilitating troubleshooting and performance optimization within isolated environments.

Graylog

  1. Enhanced Log Management for Cloud Applications: Use the Graylog Telegraf plugin to aggregate logs from cloud-deployed applications across multiple servers. By integrating this plugin, teams can centralize logging data, making it easier to troubleshoot issues, monitor application performance, and maintain compliance with logging standards.

  2. Real-Time Security Monitoring: Leverage the Graylog plugin to collect and send security-related metrics and logs to a Graylog server for real-time analysis. This allows security teams to quickly identify anomalies, track potential breaches, and respond to incidents promptly by correlating logs from various sources within the infrastructure.

  3. Dynamic Alerting and Notification System: Implement the Graylog plugin to enhance alerting mechanisms in your infrastructure. By sending metrics to Graylog, teams can set up dynamic alerts based on log patterns or unexpected behavior, enabling proactive monitoring and rapid incident response strategies.

  4. Cross-Platform Log Consolidation: Use the Graylog plugin to facilitate cross-platform log consolidation across diverse environments such as on-premises, hybrid, and cloud. By standardizing logging in the GELF format, organizations can ensure consistent monitoring and troubleshooting practices, regardless of where their services are hosted.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration