ActiveMQ and CrateDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The ActiveMQ Input Plugin collects metrics from the ActiveMQ message broker through its Console API, providing insights into the performance and status of message queues, topics, and subscribers.
The CrateDB plugin facilitates the writing of metrics to a CrateDB database, leveraging its PostgreSQL-compatible protocol to ensure a seamless experience for users.
Integration details
ActiveMQ
The ActiveMQ Input Plugin interfaces with the ActiveMQ Console API to gather metrics related to queues, topics, and subscribers. ActiveMQ, a widely-used open-source message broker, supports various messaging protocols and provides a robust Web Console for management and monitoring. This plugin allows users to track essential metrics including queue sizes, consumer counts, and message counts across different ActiveMQ entities, thereby enhancing observability within messaging systems. Users can configure various parameters such as the WebConsole URL and basic authentication credentials to tailor the plugin to their environment. The metrics collected can be used for monitoring the health and performance of messaging applications, facilitating proactive management and troubleshooting.
CrateDB
This plugin writes to CrateDB via its PostgreSQL protocol, allowing for metrics to be efficiently stored in a scalable database. CrateDB is designed for high-speed analytics, supporting time-series data and complicated queries, making it ideal for applications that require fast ingestion and analysis of large datasets. By utilizing the PostgreSQL protocol, the CrateDB output plugin ensures compatibility with existing PostgreSQL client libraries and tools, enabling a smooth integration for users who are already familiar with PostgreSQL’s ecosystem. The plugin provides options such as automatic table creation, connection parameters, and query timeouts, offering flexibility in how metrics are handled and stored within the database.
Configuration
ActiveMQ
[[inputs.activemq]]
## ActiveMQ WebConsole URL
url = "http://127.0.0.1:8161"
## Required ActiveMQ Endpoint
## deprecated in 1.11; use the url option
# server = "192.168.50.10"
# port = 8161
## Credentials for basic HTTP authentication
# username = "admin"
# password = "admin"
## Required ActiveMQ webadmin root path
# webadmin = "admin"
## Maximum time to receive response.
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
CrateDB
[[outputs.cratedb]]
## Connection parameters for accessing the database see
## https://pkg.go.dev/github.com/jackc/pgx/v4#ParseConfig
## for available options
url = "postgres://user:password@localhost/schema?sslmode=disable"
## Timeout for all CrateDB queries.
# timeout = "5s"
## Name of the table to store metrics in.
# table = "metrics"
## If true, and the metrics table does not exist, create it automatically.
# table_create = false
## The character(s) to replace any '.' in an object key with
# key_separator = "_"
Input and output integration examples
ActiveMQ
-
Proactive Queue Monitoring: Use the ActiveMQ plugin to monitor queue sizes in real-time for a high-volume trading application. This implementation allows teams to receive alerts when queue sizes exceed a certain threshold, enabling rapid response to potential downtime caused by backlogs, thereby ensuring continuous availability of trading operations.
-
Performance Baselines and Anomaly Detection: Integrate this plugin with machine learning frameworks to establish performance baselines for message throughput. By analyzing historical data collected through this plugin, teams can flag anomalies in processing rates, leading to quicker identification of issues impacting service reliability and performance.
-
Cross-Messaging System Analytics: Combine metrics from ActiveMQ with those from other messaging systems in a centralized dashboard. Users can visualize and compare performance data, such as enqueue and dequeue rates, providing valuable insights into the overall messaging architecture and assisting in optimizing the message flow between different brokers.
-
Subscriber Performance Insights: Leverage the subscriber metrics collected by this plugin to analyze behavior patterns and optimize configuration for consumer applications. Understanding metrics such as dispatched queue size and counter values can guide adjustments to improve processing efficiency and resource allocation.
CrateDB
-
Real-Time Analytics for IoT Devices: Collect and store metrics from thousands of IoT devices. By setting up a dynamic metrics table for each device, users can perform real-time analytics on the collected data, enabling quick insights into device performance, patterns, and potential failures. This setup benefits from CrateDB’s ability to handle high-throughput data ingestion while providing the necessary analytics capabilities to derive actionable insights.
-
Website Performance Monitoring: Track key performance metrics from web applications, such as request latency and user activity. By storing metrics in CrateDB, teams can leverage the power of SQL-like queries to analyze traffic patterns, user engagement, and server performance over time, leading to optimized application performance and enhanced user experiences.
-
Financial Transaction Analysis: Manage large volumes of financial transaction data for real-time fraud detection and analysis. With CrateDB’s scalable infrastructure, users can store, query, and analyze transaction metrics efficiently, allowing for the detection of anomalies and illicit activities based on transaction patterns and trends.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration