Apache and Databricks Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin interfaces with the Apache HTTP Server’s mod_status to gather and report performance metrics from the server.
Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.
Integration details
Apache
The Apache plugin collects server performance information using the mod_status module of the Apache HTTP Server. It relies on the mod_status feature, which must be explicitly enabled in the Apache configuration to access a machine-readable status page. This plugin allows users to fetch several metrics related to Apache’s operational performance, including worker status, connection statistics, and server load, thereby facilitating effective monitoring and troubleshooting of web server performance in real-time.
Databricks
This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a statement
field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a PUT ... INTO /Volumes/...
command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the warehouse_id
at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and COPY INTO
are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.
Configuration
Apache
[[inputs.apache]]
## An array of URLs to gather from, must be directed at the machine
## readable version of the mod_status page including the auto query string.
## Default is "http://localhost/server-status?auto".
urls = ["http://localhost/server-status?auto"]
## Credentials for basic HTTP authentication.
# username = "myuser"
# password = "mypassword"
## Maximum time to receive response.
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Databricks
[[outputs.http]]
## Databricks SQL Statement Execution API endpoint
url = "https://{{ env "DATABRICKS_HOST" }}/api/2.0/sql/statements"
## Use POST to submit each Telegraf batch as a SQL request
method = "POST"
## Personal-access token (PAT) for workspace or service principal
headers = { Authorization = "Bearer {{ env "DATABRICKS_TOKEN" }}" }
## Send JSON that wraps the metrics batch in a SQL INSERT (or PUT into a Volume)
content_type = "application/json"
## Serialize metrics as JSON so they can be embedded in the SQL statement
data_format = "json"
json_timestamp_units = "1ms"
## Build the request body. Telegraf replaces the template variables at runtime.
## Example inserts a row per metric into a Unity-Catalog table.
body_template = """
{
\"statement\": \"INSERT INTO ${TARGET_TABLE} VALUES {{range .Metrics}}(from_unixtime({{.timestamp}}/1000), {{.fields.usage}}, '{{.tags.host}}'){{end}}\",
\"warehouse_id\": \"${WAREHOUSE_ID}\"
}
"""
## Optional: add batching limits or TLS settings
# batch_size = 500
# timeout = "10s"
Input and output integration examples
Apache
-
Real-Time Performance Monitoring: Use the Apache input plugin to set up a real-time dashboard displaying critical performance metrics of your Apache server. By visualizing metrics such as BusyWorkers, and Load averages, you can quickly identify performance bottlenecks and server health issues, aiding in proactive management of web traffic loads.
-
Automated Alerting for Server Issues: Implement alerts based on metrics collected by this plugin to notify administrators in case of performance degradation. For instance, if the
BusyWorkers
metric exceeds a certain threshold, automatic alerts can be triggered, ensuring prompt incident response to maintain uptime and service reliability. -
Historical Performance Analysis: Combine data collected by the Apache plugin with long-term storage solutions to track performance trends over time. This accumulated data helps in understanding usage patterns, forecasting resource needs, and making informed decisions regarding server scaling or optimization.
-
Cross-System Monitoring: Integrate metrics gathered from Apache alongside metrics from other components of your web stack using Telegraf’s capabilities to send data to a centralized monitoring solution. This holistic view can simplify troubleshooting and coordination between different technologies, ensuring optimal system performance across the board.
Databricks
- Edge-to-Lakehouse Telemetry Pipe: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.
- Blue-Green CI/CD Rollout Metrics: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by
deployment_id
, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions. - SaaS Usage Metering: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.
- Security Forensics Lake: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using
PUT
commands, then runCOPY INTO
for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration