Apache Aurora and Azure Data Explorer Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Apache Aurora and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers metrics from Apache Aurora schedulers, providing insights necessary for effective monitoring of Aurora clusters.

The Azure Data Explorer plugin allows integration of metrics collection with Azure Data Explorer, enabling users to analyze and query their telemetry data efficiently. With this plugin, users can configure ingestion settings to suit their needs and leverage Azure’s powerful analytical capabilities.

Integration details

Apache Aurora

The Aurora plugin is designed to gather metrics from Apache Aurora schedulers. This plugin connects to specified schedulers using their respective URLs and retrieves operational metrics that help in monitoring the health and performance of Aurora clusters. It primarily captures numeric data from the /vars endpoint, ensuring key metrics related to task execution and resource utilization are monitored. The plugin enhances operational insights by utilizing HTTP Basic Authentication for secure access. With optional TLS configuration, it further bolsters security when transmitting data. The plugin provides a robust way to interface with Apache Aurora, reflecting a focus on operational reliability and ongoing performance assessment across distributed systems.

Azure Data Explorer

The Azure Data Explorer plugin allows users to write metrics, logs, and time series data collected from various Telegraf input plugins into Azure Data Explorer, Azure Synapse, and Real-Time Analytics in Fabric. This integration serves as a bridge, allowing applications and services to monitor their performance metrics or logs efficiently. Azure Data Explorer is optimized for analytics over large volumes of diverse data types, making it an excellent choice for real-time analytics and monitoring solutions in cloud environments. The plugin empowers users to configure metrics ingestion based on their requirements, define table schemas dynamically, and set various ingestion methods while retaining flexibility regarding roles and permissions needed for database operations. This supports scalable and secure monitoring setups for modern applications that utilize cloud services.

Configuration

Apache Aurora

[[inputs.aurora]]
  ## Schedulers are the base addresses of your Aurora Schedulers
  schedulers = ["http://127.0.0.1:8081"]

  ## Set of role types to collect metrics from.
  ##
  ## The scheduler roles are checked each interval by contacting the
  ## scheduler nodes; zookeeper is not contacted.
  # roles = ["leader", "follower"]

  ## Timeout is the max time for total network operations.
  # timeout = "5s"

  ## Username and password are sent using HTTP Basic Auth.
  # username = "username"
  # password = "pa$$word"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Azure Data Explorer

[[outputs.azure_data_explorer]]
  ## The URI property of the Azure Data Explorer resource on Azure
  ## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
  endpoint_url = ""

  ## The Azure Data Explorer database that the metrics will be ingested into.
  ## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
  ## ex: "exampledatabase"
  database = ""

  ## Timeout for Azure Data Explorer operations
  # timeout = "20s"

  ## Type of metrics grouping used when pushing to Azure Data Explorer.
  ## Default is "TablePerMetric" for one table per different metric.
  ## For more information, please check the plugin README.
  # metrics_grouping_type = "TablePerMetric"

  ## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
  # table_name = ""

  ## Creates tables and relevant mapping if set to true(default).
  ## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
  # create_tables = true

  ##  Ingestion method to use.
  ##  Available options are
  ##    - managed  --  streaming ingestion with fallback to batched ingestion or the "queued" method below
  ##    - queued   --  queue up metrics data and process sequentially
  # ingestion_type = "queued"

Input and output integration examples

Apache Aurora

  1. Dynamic Resource Allocation Monitoring: Utilize the Aurora plugin to build a real-time dashboard displaying metrics related to resource allocation in your Aurora clusters. By aggregating data from multiple schedulers, you can visualize how resources are distributed among various roles (leader and follower), enabling proactive management of resource utilization and helping prevent bottlenecks in production workloads.

  2. Alerting on Scheduler Health: Implement alerting mechanisms where the Aurora plugin checks the health of schedulers periodically. If a scheduler role responds with a status that indicates a failure to communicate (non-200 status), alerts can be automatically generated and sent to the operations team via email or messaging apps, ensuring immediate attention to critical issues and maintaining availability in service management.

  3. Performance Benchmarking Over Time: By continuously collecting metrics such as job update events and execution times, this plugin can assist teams in benchmarking the performance of their Apache Aurora deployment over time. Relevant metrics can be logged into a time-series database, enabling historical analysis, trend identification, and understanding how changes in the system, such as configuration adjustments or workload changes, impact performance.

  4. Integration with CI/CD Pipelines: Integrate the metrics collected via the Aurora plugin with CI/CD pipeline tools to monitor how deployments affect runtime metrics in Aurora. Teams can thereby ensure that new releases do not adversely impact scheduler performance and can roll back changes seamlessly if any metric exceeds predefined thresholds after deployment.

Azure Data Explorer

  1. Real-Time Monitoring Dashboard: By integrating metrics from various services into Azure Data Explorer using this plugin, organizations can build comprehensive dashboards that reflect real-time performance metrics. This allows teams to respond proactively to performance issues and optimize system health without delay.

  2. Centralized Log Management: Utilize Azure Data Explorer to consolidate logs from multiple applications and services. By utilizing the plugin, organizations can streamline their log analysis processes, making it easier to search, filter, and derive insights from historical data accumulated over time.

  3. Data-Driven Alerting Systems: Enhance monitoring capabilities by configuring alerts based on metrics sent via this plugin. Organizations can set thresholds and automate incident responses, significantly reducing downtime and improving the reliability of critical operations.

  4. Machine Learning Model Training: By leveraging the data sent to Azure Data Explorer, organizations can perform large-scale analytics and prepare the data for feeding into machine learning models. This plugin enables the structuring of data that can subsequently be used for predictive analytics, leading to enhanced decision-making capabilities.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration