Apache Aurora and DuckDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers metrics from Apache Aurora schedulers, providing insights necessary for effective monitoring of Aurora clusters.
This plugin enables Telegraf to write structured metrics into DuckDB using SQLite-compatible SQL connections, supporting lightweight local analytics and offline metric analysis.
Integration details
Apache Aurora
The Aurora plugin is designed to gather metrics from Apache Aurora schedulers. This plugin connects to specified schedulers using their respective URLs and retrieves operational metrics that help in monitoring the health and performance of Aurora clusters. It primarily captures numeric data from the /vars
endpoint, ensuring key metrics related to task execution and resource utilization are monitored. The plugin enhances operational insights by utilizing HTTP Basic Authentication for secure access. With optional TLS configuration, it further bolsters security when transmitting data. The plugin provides a robust way to interface with Apache Aurora, reflecting a focus on operational reliability and ongoing performance assessment across distributed systems.
DuckDB
Use the Telegraf SQL plugin to write metrics into a local DuckDB database. DuckDB is an in-process OLAP database designed for efficient analytical queries on columnar data. Although it does not provide a traditional client-server interface, DuckDB can be accessed via SQLite-compatible drivers in embedded mode. This allows Telegraf to store time series metrics in DuckDB using SQL, enabling powerful analytics workflows using familiar SQL syntax, Jupyter notebooks, or integration with data science tools like Python and R. DuckDB’s columnar storage and vectorized execution make it ideal for compact and high-performance metric archives.
Configuration
Apache Aurora
[[inputs.aurora]]
## Schedulers are the base addresses of your Aurora Schedulers
schedulers = ["http://127.0.0.1:8081"]
## Set of role types to collect metrics from.
##
## The scheduler roles are checked each interval by contacting the
## scheduler nodes; zookeeper is not contacted.
# roles = ["leader", "follower"]
## Timeout is the max time for total network operations.
# timeout = "5s"
## Username and password are sent using HTTP Basic Auth.
# username = "username"
# password = "pa$$word"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
DuckDB
[[outputs.sql]]
## Use the SQLite driver to connect to DuckDB via Go's database/sql
driver = "sqlite3"
## DSN should point to the DuckDB database file
dsn = "file:/var/lib/telegraf/metrics.duckdb"
## SQL INSERT statement with placeholders for metrics
table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"
## Optional: manage connection pooling
# max_open_connections = 1
# max_idle_connections = 1
# conn_max_lifetime = "0s"
## DuckDB does not require TLS or authentication by default
Input and output integration examples
Apache Aurora
-
Dynamic Resource Allocation Monitoring: Utilize the Aurora plugin to build a real-time dashboard displaying metrics related to resource allocation in your Aurora clusters. By aggregating data from multiple schedulers, you can visualize how resources are distributed among various roles (leader and follower), enabling proactive management of resource utilization and helping prevent bottlenecks in production workloads.
-
Alerting on Scheduler Health: Implement alerting mechanisms where the Aurora plugin checks the health of schedulers periodically. If a scheduler role responds with a status that indicates a failure to communicate (non-200 status), alerts can be automatically generated and sent to the operations team via email or messaging apps, ensuring immediate attention to critical issues and maintaining availability in service management.
-
Performance Benchmarking Over Time: By continuously collecting metrics such as job update events and execution times, this plugin can assist teams in benchmarking the performance of their Apache Aurora deployment over time. Relevant metrics can be logged into a time-series database, enabling historical analysis, trend identification, and understanding how changes in the system, such as configuration adjustments or workload changes, impact performance.
-
Integration with CI/CD Pipelines: Integrate the metrics collected via the Aurora plugin with CI/CD pipeline tools to monitor how deployments affect runtime metrics in Aurora. Teams can thereby ensure that new releases do not adversely impact scheduler performance and can roll back changes seamlessly if any metric exceeds predefined thresholds after deployment.
DuckDB
-
Embedded Metric Warehousing for Notebooks: Write metrics to a local DuckDB file from Telegraf and analyze them in Jupyter notebooks using Python or R. This workflow supports reproducible analytics, ideal for data science experiments or offline troubleshooting.
-
Batch Time-Series Processing on the Edge: Use Telegraf with DuckDB on edge devices to log metrics locally in SQL format. The compact storage and fast analytical capabilities of DuckDB make it ideal for batch processing and low-bandwidth environments.
-
Exploratory Querying of Historical Metrics: Accumulate system metrics over time in DuckDB and perform exploratory data analysis (EDA) using SQL joins, window functions, and aggregates. This enables insights that go beyond what typical time-series dashboards provide.
-
Self-Contained Metric Snapshots: Use DuckDB as a portable metrics archive by shipping
.duckdb
files between systems. Telegraf can collect and store data in this format, and analysts can later load and query it using the DuckDB CLI or integrations with tools like Tableau and Apache Arrow.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration