Apache Aurora and GroundWork Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers metrics from Apache Aurora schedulers, providing insights necessary for effective monitoring of Aurora clusters.
This plugin writes to a GroundWork Monitor instance, allowing for effective metrics management and monitoring in a centralized manner.
Integration details
Apache Aurora
The Aurora plugin is designed to gather metrics from Apache Aurora schedulers. This plugin connects to specified schedulers using their respective URLs and retrieves operational metrics that help in monitoring the health and performance of Aurora clusters. It primarily captures numeric data from the /vars
endpoint, ensuring key metrics related to task execution and resource utilization are monitored. The plugin enhances operational insights by utilizing HTTP Basic Authentication for secure access. With optional TLS configuration, it further bolsters security when transmitting data. The plugin provides a robust way to interface with Apache Aurora, reflecting a focus on operational reliability and ongoing performance assessment across distributed systems.
GroundWork
The GroundWork plugin enables Telegraf to send metrics to a GroundWork Monitor instance, specifically supporting GW8 and newer versions. This integration allows users to leverage the robust monitoring capabilities of GroundWork, enabling comprehensive oversight of metrics collected from diverse sources. Users can specify various parameters such as the GroundWork instance URL, agent IDs, and authentication credentials, allowing for a tailored fit within their existing monitoring setups. It also supports secret-store secrets to enhance security for sensitive fields like username and password. Tags used within the plugin provide fine-grained control over how metrics are categorized and displayed within the GroundWork interface, allowing for custom configurations that adapt to different monitoring needs. However, users should be aware that string metrics are currently not supported by GroundWork, impacting how they manage their data.
Configuration
Apache Aurora
[[inputs.aurora]]
## Schedulers are the base addresses of your Aurora Schedulers
schedulers = ["http://127.0.0.1:8081"]
## Set of role types to collect metrics from.
##
## The scheduler roles are checked each interval by contacting the
## scheduler nodes; zookeeper is not contacted.
# roles = ["leader", "follower"]
## Timeout is the max time for total network operations.
# timeout = "5s"
## Username and password are sent using HTTP Basic Auth.
# username = "username"
# password = "pa$$word"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
GroundWork
[[outputs.groundwork]]
## URL of your groundwork instance.
url = "https://groundwork.example.com"
## Agent uuid for GroundWork API Server.
agent_id = ""
## Username and password to access GroundWork API.
username = ""
password = ""
## Default application type to use in GroundWork client
# default_app_type = "TELEGRAF"
## Default display name for the host with services(metrics).
# default_host = "telegraf"
## Default service state.
# default_service_state = "SERVICE_OK"
## The name of the tag that contains the hostname.
# resource_tag = "host"
## The name of the tag that contains the host group name.
# group_tag = "group"
Input and output integration examples
Apache Aurora
-
Dynamic Resource Allocation Monitoring: Utilize the Aurora plugin to build a real-time dashboard displaying metrics related to resource allocation in your Aurora clusters. By aggregating data from multiple schedulers, you can visualize how resources are distributed among various roles (leader and follower), enabling proactive management of resource utilization and helping prevent bottlenecks in production workloads.
-
Alerting on Scheduler Health: Implement alerting mechanisms where the Aurora plugin checks the health of schedulers periodically. If a scheduler role responds with a status that indicates a failure to communicate (non-200 status), alerts can be automatically generated and sent to the operations team via email or messaging apps, ensuring immediate attention to critical issues and maintaining availability in service management.
-
Performance Benchmarking Over Time: By continuously collecting metrics such as job update events and execution times, this plugin can assist teams in benchmarking the performance of their Apache Aurora deployment over time. Relevant metrics can be logged into a time-series database, enabling historical analysis, trend identification, and understanding how changes in the system, such as configuration adjustments or workload changes, impact performance.
-
Integration with CI/CD Pipelines: Integrate the metrics collected via the Aurora plugin with CI/CD pipeline tools to monitor how deployments affect runtime metrics in Aurora. Teams can thereby ensure that new releases do not adversely impact scheduler performance and can roll back changes seamlessly if any metric exceeds predefined thresholds after deployment.
GroundWork
-
Centralized Monitoring Dashboard: Use the GroundWork plugin to aggregate metrics from multiple Telegraf instances into a single GroundWork Monitor dashboard. This configuration offers complete visibility into system health across various components, enabling swift identification of performance bottlenecks and improved incident response times.
-
Service Health Monitoring with Alerts: Configure this plugin to send critical service metrics to GroundWork, establishing a robust alerting system. Metrics such as CPU usage and service statuses can trigger alerts based on threshold values, informing administrators of potential issues before they escalate, thereby enhancing system reliability.
-
Historical Data Analysis: Leverage the historical metric capabilities of GroundWork using this plugin to conduct trend analysis over time. This application allows organizations to make data-driven decisions based on comprehensive historical performance metrics, which can assist in capacity planning and optimize resource allocation.
-
Custom Service Tags for Enhanced Monitoring: Extend the functionality of this plugin by utilizing custom tags for different services and hosts. By customizing these tags, users can filter and categorize metrics more effectively within their monitoring framework, leading to tailored monitoring experiences that align specifically with business objectives.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration