Apache Aurora and Mimir Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Apache Aurora and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers metrics from Apache Aurora schedulers, providing insights necessary for effective monitoring of Aurora clusters.

This plugin sends Telegraf metrics directly to Grafana’s Mimir database using HTTP, providing scalable and efficient long-term storage and analysis for Prometheus-compatible metrics.

Integration details

Apache Aurora

The Aurora plugin is designed to gather metrics from Apache Aurora schedulers. This plugin connects to specified schedulers using their respective URLs and retrieves operational metrics that help in monitoring the health and performance of Aurora clusters. It primarily captures numeric data from the /vars endpoint, ensuring key metrics related to task execution and resource utilization are monitored. The plugin enhances operational insights by utilizing HTTP Basic Authentication for secure access. With optional TLS configuration, it further bolsters security when transmitting data. The plugin provides a robust way to interface with Apache Aurora, reflecting a focus on operational reliability and ongoing performance assessment across distributed systems.

Mimir

Grafana Mimir supports the Prometheus Remote Write protocol, enabling Telegraf collected metrics to be efficiently ingested into Mimir clusters for large-scale, long-term storage. This integration leverages Prometheus’s well-established standards, allowing users to combine Telegraf’s extensive data collection capabilities with Mimir’s advanced features, such as query federation, multi-tenancy, high availability, and cost-efficient storage. Grafana Mimir’s architecture is optimized for handling high volumes of metric data and delivering fast query responses, making it ideal for complex monitoring environments and distributed systems.

Configuration

Apache Aurora

[[inputs.aurora]]
  ## Schedulers are the base addresses of your Aurora Schedulers
  schedulers = ["http://127.0.0.1:8081"]

  ## Set of role types to collect metrics from.
  ##
  ## The scheduler roles are checked each interval by contacting the
  ## scheduler nodes; zookeeper is not contacted.
  # roles = ["leader", "follower"]

  ## Timeout is the max time for total network operations.
  # timeout = "5s"

  ## Username and password are sent using HTTP Basic Auth.
  # username = "username"
  # password = "pa$$word"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Mimir

[[outputs.http]]
  url = "http://data-load-balancer-backend-1:9009/api/v1/push"
  data_format = "prometheusremotewrite"
  username = "*****"
  password = "******"
  [outputs.http.headers]
     Content-Type = "application/x-protobuf"
     Content-Encoding = "snappy"
     X-Scope-OrgID = "****"

Input and output integration examples

Apache Aurora

  1. Dynamic Resource Allocation Monitoring: Utilize the Aurora plugin to build a real-time dashboard displaying metrics related to resource allocation in your Aurora clusters. By aggregating data from multiple schedulers, you can visualize how resources are distributed among various roles (leader and follower), enabling proactive management of resource utilization and helping prevent bottlenecks in production workloads.

  2. Alerting on Scheduler Health: Implement alerting mechanisms where the Aurora plugin checks the health of schedulers periodically. If a scheduler role responds with a status that indicates a failure to communicate (non-200 status), alerts can be automatically generated and sent to the operations team via email or messaging apps, ensuring immediate attention to critical issues and maintaining availability in service management.

  3. Performance Benchmarking Over Time: By continuously collecting metrics such as job update events and execution times, this plugin can assist teams in benchmarking the performance of their Apache Aurora deployment over time. Relevant metrics can be logged into a time-series database, enabling historical analysis, trend identification, and understanding how changes in the system, such as configuration adjustments or workload changes, impact performance.

  4. Integration with CI/CD Pipelines: Integrate the metrics collected via the Aurora plugin with CI/CD pipeline tools to monitor how deployments affect runtime metrics in Aurora. Teams can thereby ensure that new releases do not adversely impact scheduler performance and can roll back changes seamlessly if any metric exceeds predefined thresholds after deployment.

Mimir

  1. Enterprise-Scale Kubernetes Monitoring: Integrate Telegraf with Grafana Mimir to stream metrics from Kubernetes clusters at enterprise scale. This enables comprehensive visibility, improved resource allocation, and proactive troubleshooting across hundreds of clusters, leveraging Mimir’s horizontal scalability and high availability.

  2. Multi-tenant SaaS Application Observability: Use this plugin to centralize metrics from diverse SaaS tenants into Grafana Mimir, enabling tenant isolation and accurate billing based on resource usage. This approach provides reliable observability, efficient cost management, and secure multi-tenancy support.

  3. Global Edge Network Performance Tracking: Stream latency and availability metrics from globally distributed edge servers into Grafana Mimir. Organizations can quickly identify performance degradation or outages, leveraging Mimir’s fast querying capabilities to ensure optimal service reliability and user experience.

  4. Real-Time Analytics for High-Volume Microservices: Implement Telegraf metrics collection in high-volume microservices architectures, feeding data into Grafana Mimir for real-time analytics and anomaly detection. Mimir’s powerful querying enables teams to detect anomalies and quickly respond, maintaining high service availability and performance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration