Apache Aurora and MongoDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers metrics from Apache Aurora schedulers, providing insights necessary for effective monitoring of Aurora clusters.
The MongoDB Telegraf Plugin enables users to send metrics to a MongoDB database, automatically managing time series collections.
Integration details
Apache Aurora
The Aurora plugin is designed to gather metrics from Apache Aurora schedulers. This plugin connects to specified schedulers using their respective URLs and retrieves operational metrics that help in monitoring the health and performance of Aurora clusters. It primarily captures numeric data from the /vars
endpoint, ensuring key metrics related to task execution and resource utilization are monitored. The plugin enhances operational insights by utilizing HTTP Basic Authentication for secure access. With optional TLS configuration, it further bolsters security when transmitting data. The plugin provides a robust way to interface with Apache Aurora, reflecting a focus on operational reliability and ongoing performance assessment across distributed systems.
MongoDB
This plugin sends metrics to MongoDB and seamlessly integrates with its time series functionality, allowing for automatic creation of collections as time series when they don’t already exist. It requires MongoDB version 5.0 or higher to utilize the time series collections feature, which is vital for efficiently storing and querying time-based data. This plugin enhances the monitoring capabilities by ensuring that all relevant metrics are stored and organized correctly within MongoDB, providing users the ability to leverage MongoDB’s powerful querying and aggregation features for time series analysis.
Configuration
Apache Aurora
[[inputs.aurora]]
## Schedulers are the base addresses of your Aurora Schedulers
schedulers = ["http://127.0.0.1:8081"]
## Set of role types to collect metrics from.
##
## The scheduler roles are checked each interval by contacting the
## scheduler nodes; zookeeper is not contacted.
# roles = ["leader", "follower"]
## Timeout is the max time for total network operations.
# timeout = "5s"
## Username and password are sent using HTTP Basic Auth.
# username = "username"
# password = "pa$$word"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
MongoDB
[[outputs.mongodb]]
# connection string examples for mongodb
dsn = "mongodb://localhost:27017"
# dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"
# overrides serverSelectionTimeoutMS in dsn if set
# timeout = "30s"
# default authentication, optional
# authentication = "NONE"
# for SCRAM-SHA-256 authentication
# authentication = "SCRAM"
# username = "root"
# password = "***"
# for x509 certificate authentication
# authentication = "X509"
# tls_ca = "ca.pem"
# tls_key = "client.pem"
# # tls_key_pwd = "changeme" # required for encrypted tls_key
# insecure_skip_verify = false
# database to store measurements and time series collections
# database = "telegraf"
# granularity can be seconds, minutes, or hours.
# configuring this value will be based on your input collection frequency.
# see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
# granularity = "seconds"
# optionally set a TTL to automatically expire documents from the measurement collections.
# ttl = "360h"
Input and output integration examples
Apache Aurora
-
Dynamic Resource Allocation Monitoring: Utilize the Aurora plugin to build a real-time dashboard displaying metrics related to resource allocation in your Aurora clusters. By aggregating data from multiple schedulers, you can visualize how resources are distributed among various roles (leader and follower), enabling proactive management of resource utilization and helping prevent bottlenecks in production workloads.
-
Alerting on Scheduler Health: Implement alerting mechanisms where the Aurora plugin checks the health of schedulers periodically. If a scheduler role responds with a status that indicates a failure to communicate (non-200 status), alerts can be automatically generated and sent to the operations team via email or messaging apps, ensuring immediate attention to critical issues and maintaining availability in service management.
-
Performance Benchmarking Over Time: By continuously collecting metrics such as job update events and execution times, this plugin can assist teams in benchmarking the performance of their Apache Aurora deployment over time. Relevant metrics can be logged into a time-series database, enabling historical analysis, trend identification, and understanding how changes in the system, such as configuration adjustments or workload changes, impact performance.
-
Integration with CI/CD Pipelines: Integrate the metrics collected via the Aurora plugin with CI/CD pipeline tools to monitor how deployments affect runtime metrics in Aurora. Teams can thereby ensure that new releases do not adversely impact scheduler performance and can roll back changes seamlessly if any metric exceeds predefined thresholds after deployment.
MongoDB
-
Dynamic Logging to MongoDB for IoT Devices: Utilize this plugin to collect and store metrics from a fleet of IoT devices in real-time. By sending device logs directly to MongoDB, you can create a centralized database that allows for easy access and querying of health metrics and performance data, enabling proactive maintenance and troubleshooting based on historical trends.
-
Time Series Analysis of Web Traffic: Use the MongoDB Telegraf Plugin to gather and analyze web traffic metrics over time. This application can help you understand peak usage times, user interactions, and behavior patterns, which can guide marketing strategies and infrastructure scaling decisions for improved user experience.
-
Automated Monitoring and Alerting System: Integrate the MongoDB plugin into an automated monitoring system that tracks application performance metrics. With time series collections, you can set up alerts based on specific thresholds, allowing your team to respond to potential issues before they affect users. This proactive management can enhance service reliability and overall performance.
-
Data Retention and TTL Management in Metrics Storage: Leverage the TTL feature for documents within MongoDB collections to auto-expire outdated metrics. This is particularly useful for environments where only recent performance data is relevant, preventing your MongoDB database from becoming cluttered with old metrics and ensuring efficient data management.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration