Apache Zookeeper and Librato Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Apache Zookeeper and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Zookeeper Telegraf plugin collects and reports metrics from Zookeeper servers, facilitating monitoring and performance analysis. It utilizes the ‘mntr’ command output to gather essential statistics critical for maintaining Zookeeper’s operational health.

The Librato plugin for Telegraf is designed to facilitate seamless integration with the Librato Metrics API, allowing for efficient metric reporting and monitoring.

Integration details

Apache Zookeeper

The Zookeeper plugin for Telegraf is designed to collect vital statistics from Zookeeper servers by executing the ‘mntr’ command. This plugin serves as a monitoring tool that captures important metrics related to Zookeeper’s performance, including connection details, latency, and various operational statistics, facilitating the assessment of the health and efficiency of Zookeeper deployments. In contrast to the Prometheus input plugin, which is recommended when the Prometheus metrics provider is enabled, the Zookeeper plugin accesses raw output from the ‘mntr’ command, rendering it tailored for configurations that do not adopt Prometheus for metrics reporting. This unique approach allows administrators to gather Java Properties formatted metrics directly from Zookeeper, ensuring comprehensive visibility into Zookeeper’s operational state and enabling timely responses to performance anomalies. It specifically excels in environments where Zookeeper operates as a centralized service for maintaining configuration information and names for distributed systems, thus providing immeasurable insights essential for troubleshooting and capacity planning.

Librato

The Librato plugin enables Telegraf to send metrics to the Librato Metrics API. To authenticate, users must provide an api_user and api_token, which can be acquired from the Librato account settings. This integration allows for efficient monitoring and reporting of custom metrics within the Librato platform. The plugin also utilizes a source_tag option that can enrich the metrics with contextual information from Point Tags; however, it does not currently support sending associated Point Tags. It is essential to note that any point value sent that cannot be converted to a float64 type will be skipped, ensuring that only valid metrics are processed and sent to Librato. The plugin also supports secret-store options for managing sensitive authentication credentials securely, facilitating best practices in credential management.

Configuration

Apache Zookeeper

[[inputs.zookeeper]]
  ## An array of address to gather stats about. Specify an ip or hostname
  ## with port. ie localhost:2181, 10.0.0.1:2181, etc.

  ## If no servers are specified, then localhost is used as the host.
  ## If no port is specified, 2181 is used
  servers = [":2181"]

  ## Timeout for metric collections from all servers. Minimum timeout is "1s".
  # timeout = "5s"

  ## Float Parsing - the initial implementation forced any value unable to be
  ## parsed as an int to be a string. Setting this to "float" will attempt to
  ## parse float values as floats and not strings. This would break existing
  ## metrics and may cause issues if a value switches between a float and int.
  # parse_floats = "string"

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

Librato

[[outputs.librato]]
  ## Librato API Docs
  ## http://dev.librato.com/v1/metrics-authentication
  ## Librato API user
  api_user = "[email protected]" # required.
  ## Librato API token
  api_token = "my-secret-token" # required.
  ## Debug
  # debug = false
  ## Connection timeout.
  # timeout = "5s"
  ## Output source Template (same as graphite buckets)
  ## see https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md#graphite
  ## This template is used in librato's source (not metric's name)
  template = "host"

Input and output integration examples

Apache Zookeeper

  1. Cluster Health Monitoring: Integrate the Zookeeper plugin to monitor the health and performance of a distributed application relying on Zookeeper for configuration management and service discovery. By tracking metrics such as session count, latency, and data size, DevOps teams can identify potential issues before they escalate, ensuring high availability and reliability across applications.

  2. Performance Benchmarks: Utilize the plugin to benchmark Zookeeper performance in varying workload scenarios. This not only helps in understanding how Zookeeper behaves under load but also assists in tuning configurations to optimize throughput and reduce latency during peak operations.

  3. Alerting for Anomalies: Combine this plugin with alerting tools to create a proactive monitoring system that notifies engineers if specific Zookeeper metrics exceed threshold limits, such as open file descriptor counts or high latency values. This enables teams to respond promptly to issues that could impact service reliability.

  4. Historical Data Analysis: Store the metrics collected by the Zookeeper plugin in a time-series database to analyze historical performance trends. This allows teams to evaluate the impact of changes over time, assess the effectiveness of scaling actions, and plan for future capacity needs.

Librato

  1. Real-time Application Monitoring: Utilize Librato to collect performance metrics from a web application in real-time. This setup involves sending response times, error rates, and user interactions to Librato, allowing developers to monitor the application’s health and performance metrics closely. By analyzing these metrics, teams can quickly identify and address performance bottlenecks or application failures before they impact end users.

  2. Infrastructure Metrics Aggregation: Leverage this plugin to gather and send metrics from various infrastructure components, such as servers or containers, to Librato for centralized monitoring. Configuring the plugin to send CPU, memory usage, and disk I/O metrics enables system administrators to have a comprehensive view of infrastructure performance, assisting in capacity planning and resource optimization strategies.

  3. Custom Metrics for Business Operations: Feed business-specific metrics, such as sales transactions or user sign-ups, to the Librato service using this plugin. By tracking these custom metrics, businesses can gain insights into their operational performance and make data-driven decisions to enhance their strategies, marketing efforts, or product development initiatives.

  4. Anomaly Detection in Metrics: Implement monitoring tools that utilize machine learning for anomaly detection. By continuously sending real-time metrics to Librato, teams can analyze trends and automatically flag unusual behavior, such as sudden spikes in latency or unusual traffic patterns, enabling timely intervention and troubleshooting.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration