Apache Zookeeper and Sensu Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Apache Zookeeper and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Zookeeper Telegraf plugin collects and reports metrics from Zookeeper servers, facilitating monitoring and performance analysis. It utilizes the ‘mntr’ command output to gather essential statistics critical for maintaining Zookeeper’s operational health.

This plugin writes metrics events to Sensu via its HTTP events API, enabling seamless integration with the Sensu monitoring platform.

Integration details

Apache Zookeeper

The Zookeeper plugin for Telegraf is designed to collect vital statistics from Zookeeper servers by executing the ‘mntr’ command. This plugin serves as a monitoring tool that captures important metrics related to Zookeeper’s performance, including connection details, latency, and various operational statistics, facilitating the assessment of the health and efficiency of Zookeeper deployments. In contrast to the Prometheus input plugin, which is recommended when the Prometheus metrics provider is enabled, the Zookeeper plugin accesses raw output from the ‘mntr’ command, rendering it tailored for configurations that do not adopt Prometheus for metrics reporting. This unique approach allows administrators to gather Java Properties formatted metrics directly from Zookeeper, ensuring comprehensive visibility into Zookeeper’s operational state and enabling timely responses to performance anomalies. It specifically excels in environments where Zookeeper operates as a centralized service for maintaining configuration information and names for distributed systems, thus providing immeasurable insights essential for troubleshooting and capacity planning.

Sensu

This plugin writes metrics events to Sensu via its HTTP events API. Sensu is a monitoring system that enables users to collect, analyze, and manage metrics from various components in their infrastructure. The plugin facilitates the integration of Telegraf, a server agent for collecting and reporting metrics, with the Sensu monitoring platform. Users can configure settings such as backend and agent API URLs, API keys for authentication, and optional TLS settings. The plugin’s core functionality is centered around sending metric events, including check and entity specifications, to Sensu, allowing for comprehensive monitoring and alerting. The API reference provides extensive details about the events and metrics structure, ensuring users can efficiently leverage Sensu’s capabilities for observability and incident response.

Configuration

Apache Zookeeper

[[inputs.zookeeper]]
  ## An array of address to gather stats about. Specify an ip or hostname
  ## with port. ie localhost:2181, 10.0.0.1:2181, etc.

  ## If no servers are specified, then localhost is used as the host.
  ## If no port is specified, 2181 is used
  servers = [":2181"]

  ## Timeout for metric collections from all servers. Minimum timeout is "1s".
  # timeout = "5s"

  ## Float Parsing - the initial implementation forced any value unable to be
  ## parsed as an int to be a string. Setting this to "float" will attempt to
  ## parse float values as floats and not strings. This would break existing
  ## metrics and may cause issues if a value switches between a float and int.
  # parse_floats = "string"

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

Sensu

[[outputs.sensu]]
  ## BACKEND API URL is the Sensu Backend API root URL to send metrics to
  ## (protocol, host, and port only). The output plugin will automatically
  ## append the corresponding backend API path
  ## /api/core/v2/namespaces/:entity_namespace/events/:entity_name/:check_name).
  ##
  ## Backend Events API reference:
  ## https://docs.sensu.io/sensu-go/latest/api/events/
  ##
  ## AGENT API URL is the Sensu Agent API root URL to send metrics to
  ## (protocol, host, and port only). The output plugin will automatically
  ## append the correspeonding agent API path (/events).
  ##
  ## Agent API Events API reference:
  ## https://docs.sensu.io/sensu-go/latest/api/events/
  ##
  ## NOTE: if backend_api_url and agent_api_url and api_key are set, the output
  ## plugin will use backend_api_url. If backend_api_url and agent_api_url are
  ## not provided, the output plugin will default to use an agent_api_url of
  ## http://127.0.0.1:3031
  ##
  # backend_api_url = "http://127.0.0.1:8080"
  # agent_api_url = "http://127.0.0.1:3031"

  ## API KEY is the Sensu Backend API token
  ## Generate a new API token via:
  ##
  ## $ sensuctl cluster-role create telegraf --verb create --resource events,entities
  ## $ sensuctl cluster-role-binding create telegraf --cluster-role telegraf --group telegraf
  ## $ sensuctl user create telegraf --group telegraf --password REDACTED
  ## $ sensuctl api-key grant telegraf
  ##
  ## For more information on Sensu RBAC profiles & API tokens, please visit:
  ## - https://docs.sensu.io/sensu-go/latest/reference/rbac/
  ## - https://docs.sensu.io/sensu-go/latest/reference/apikeys/
  ##
  # api_key = "${SENSU_API_KEY}"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Timeout for HTTP message
  # timeout = "5s"

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "identity"

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of
  ## the table

  ## Sensu Event details
  ##
  ## Below are the event details to be sent to Sensu.  The main portions of the
  ## event are the check, entity, and metrics specifications. For more information
  ## on Sensu events and its components, please visit:
  ## - Events - https://docs.sensu.io/sensu-go/latest/reference/events
  ## - Checks -  https://docs.sensu.io/sensu-go/latest/reference/checks
  ## - Entities - https://docs.sensu.io/sensu-go/latest/reference/entities
  ## - Metrics - https://docs.sensu.io/sensu-go/latest/reference/events#metrics
  ##
  ## Check specification
  ## The check name is the name to give the Sensu check associated with the event
  ## created. This maps to check.metadata.name in the event.
  [outputs.sensu.check]
    name = "telegraf"

  ## Entity specification
  ## Configure the entity name and namespace, if necessary. This will be part of
  ## the entity.metadata in the event.
  ##
  ## NOTE: if the output plugin is configured to send events to a
  ## backend_api_url and entity_name is not set, the value returned by
  ## os.Hostname() will be used; if the output plugin is configured to send
  ## events to an agent_api_url, entity_name and entity_namespace are not used.
  # [outputs.sensu.entity]
  #   name = "server-01"
  #   namespace = "default"

  ## Metrics specification
  ## Configure the tags for the metrics that are sent as part of the Sensu event
  # [outputs.sensu.tags]
  #   source = "telegraf"

  ## Configure the handler(s) for processing the provided metrics
  # [outputs.sensu.metrics]
  #   handlers = ["influxdb","elasticsearch"]

Input and output integration examples

Apache Zookeeper

  1. Cluster Health Monitoring: Integrate the Zookeeper plugin to monitor the health and performance of a distributed application relying on Zookeeper for configuration management and service discovery. By tracking metrics such as session count, latency, and data size, DevOps teams can identify potential issues before they escalate, ensuring high availability and reliability across applications.

  2. Performance Benchmarks: Utilize the plugin to benchmark Zookeeper performance in varying workload scenarios. This not only helps in understanding how Zookeeper behaves under load but also assists in tuning configurations to optimize throughput and reduce latency during peak operations.

  3. Alerting for Anomalies: Combine this plugin with alerting tools to create a proactive monitoring system that notifies engineers if specific Zookeeper metrics exceed threshold limits, such as open file descriptor counts or high latency values. This enables teams to respond promptly to issues that could impact service reliability.

  4. Historical Data Analysis: Store the metrics collected by the Zookeeper plugin in a time-series database to analyze historical performance trends. This allows teams to evaluate the impact of changes over time, assess the effectiveness of scaling actions, and plan for future capacity needs.

Sensu

  1. Real-Time Infrastructure Monitoring: Utilize the Sensu plugin to send performance metrics from various servers and services directly to Sensu. This real-time data flow enables teams to visualize infrastructure health, track resource usage, and receive immediate alerts for any anomalies detected. By centralizing monitoring through Sensu, organizations can create a holistic view of their systems and respond swiftly to issues.

  2. Automated Incident Response Workflows: Leverage the plugin to automatically trigger incident response workflows based on the metrics events sent to Sensu. For example, if CPU usage exceeds a defined threshold, the Sensu system can be configured to alert the operations team, which can then initiate automated remediation processes, reducing downtime and maintaining system reliability. This integration allows for proactive management of system resources.

  3. Dynamic Scaling of Resources: Use the Sensu plugin to feed metrics into an auto-scaling system that adjusts resources based on demand. By tracking metrics like request load and resource utilization, organizations can automatically scale their infrastructure up or down, ensuring optimal performance and cost efficiency without manual intervention.

  4. Centralized Logging and Monitoring: Combine the Sensu with logging tools to send logs and performance metrics to a centralized monitoring system. This comprehensive approach allows teams to correlate logs with metric events, providing deeper insights into system behavior and performance, which aids in troubleshooting and performance optimization over time.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration