Arista LANZ and OpenObserve Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Arista LANZ plugin is designed for reading latency and congestion metrics from Arista LANZ, helping users monitor their network performance effectively.
This configuration pairs Telegraf’s HTTP output with OpenObserve’s native JSON ingestion API, turning any Telegraf agent into a first-class OpenObserve collector.
Integration details
Arista LANZ
This plugin provides a consumer for use with Arista Networks’ Latency Analyzer (LANZ). Metrics are read from a stream of data via TCP through port 50001 on the switches management IP. The data is in Protobuffers format, allowing for efficient transportation and parsing of data. LANZ is utilized to monitor network latency and congestion in real-time, which is vital for maintaining optimal performance in networking environments. The underlying technology, Arista’s latency analysis, provides insights into various network operations and infrastructure behaviors, making it a crucial tool for network engineering and management.
OpenObserve
OpenObserve is an open source observability platform written in Rust that stores data cost-effectively on object storage or local disk. It exposes REST endpoints such as /api/{org}/ingest/metrics/_json
that accept batched metric documents conforming to a concise JSON schema, making it an attractive drop-in replacement for Loki or Elasticsearch stacks. The Telegraf HTTP output plugin streams metrics to arbitrary HTTP targets; when the "data_format = "json"" serializer is selected, Telegraf batches its metric objects into a payload that matches OpenObserve’s ingestion contract. The plugin supports configurable batch size, custom headers, TLS, and compression, allowing operators to authenticate with Basic or Bearer tokens and to enforce back-pressure without additional collectors. By reusing existing Telegraf agents already collecting system, application, or SNMP data, organizations can funnel rich telemetry into OpenObserve dashboards and SQL-like analytics with minimal overhead, enabling unified observability, long-term retention, and real-time alerting without vendor lock-in.
Configuration
Arista LANZ
[[inputs.lanz]]
## URL to Arista LANZ endpoint
servers = [
"tcp://switch1.int.example.com:50001",
"tcp://switch2.int.example.com:50001",
]
OpenObserve
[[outputs.http]]
## OpenObserve JSON metrics ingestion endpoint
url = "https://api.openobserve.ai/api/default/ingest/metrics/_json"
## Use POST to push batches
method = "POST"
## Basic auth header (base64 encoded "username:password")
headers = { Authorization = "Basic dXNlcjpwYXNzd29yZA==" }
## Timeout for HTTP requests
timeout = "10s"
## Override Content-Type to match OpenObserve expectation
content_type = "application/json"
## Force Telegraf to batch and serialize metrics as JSON
data_format = "json"
## JSON serializer specific options
json_timestamp_units = "1ms"
## Uncomment to restrict batch size
# batch_size = 5000
Input and output integration examples
Arista LANZ
-
Real-Time Latency Monitoring: This plugin can be used to set up a monitoring dashboard that tracks real-time latency metrics across multiple interfaces. By gathering and visualizing this data, network admins can swiftly identify and rectify latency issues before they impact service quality. The challenge lies in efficiently handling the influx of metrics from various sources without overwhelming the infrastructure or incurring excessive processing delays.
-
Congestion Analysis for Traffic Engineering: Users can leverage the LANZ plugin to analyze congestion records, enabling the optimization of network traffic flows. By applying historical pattern recognition to the metrics collected, IT teams can make informed decisions on traffic management strategies, thus improving overall network efficiency. This requires implementing robust data storage and analysis capabilities to derive actionable insights from the raw metrics.
-
Integration with Alerting Systems: Integrate the metrics from this plugin with alerting systems to automatically notify network engineers of any significant changes in latency or congestion. By setting thresholds based on historical data trends, this use case enhances proactive incident management, allowing teams to address potential issues proactively. The technical challenge here is establishing the right balance in threshold settings to minimize false positives while ensuring genuine issues are flagged promptly.
-
Network Optimization Reports: Utilize the metrics gathered through the LANZ plugin to generate periodic reports that detail network performance, latency trends, and congestion events. These reports can help stakeholders understand network health over time and guide infrastructure investments. The challenge involves structuring and formatting the output data to make it comprehensible and actionable for various audiences.
OpenObserve
-
Edge Device Health Mirror: Deploy Telegraf on thousands of industrial IoT devices to capture temperature, vibration, and power metrics, then use this output to push JSON batches to OpenObserve. Plant operators gain a real-time overview of machine health and can trigger maintenance based on anomalies without relying on heavyweight collectors.
-
Blue-Green Deployment Canary: Attach a lightweight Telegraf sidecar to each Kubernetes release-candidate pod that scrapes /metrics and forwards container stats to a dedicated “canary” stream in OpenObserve. Continuous comparison of error rates between blue and green versions empowers the CI pipeline to auto-roll back poor performers within seconds.
-
Multi-Tenant SaaS Billing Pipeline: Emit per-customer usage counters via Telegraf and tag them with
tenant_id
; the HTTP plugin posts them to OpenObserve where SQL reports aggregate usage into invoices, eliminating separate metering services and simplifying compliance audits. -
Security Threat Scoring: Fuse Suricata events and host resource metrics in Telegraf, deliver them to OpenObserve’s analytics engine, and run stream-processing rules that correlate spikes in suspicious traffic with CPU saturation to produce an actionable threat score and automatically open tickets in a SOAR platform.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration