Arista LANZ and OpenTSDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Arista LANZ and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Arista LANZ plugin is designed for reading latency and congestion metrics from Arista LANZ, helping users monitor their network performance effectively.

The OpenTSDB plugin facilitates the integration of Telegraf with OpenTSDB, allowing users to push time-series metrics to an OpenTSDB backend seamlessly.

Integration details

Arista LANZ

This plugin provides a consumer for use with Arista Networks’ Latency Analyzer (LANZ). Metrics are read from a stream of data via TCP through port 50001 on the switches management IP. The data is in Protobuffers format, allowing for efficient transportation and parsing of data. LANZ is utilized to monitor network latency and congestion in real-time, which is vital for maintaining optimal performance in networking environments. The underlying technology, Arista’s latency analysis, provides insights into various network operations and infrastructure behaviors, making it a crucial tool for network engineering and management.

OpenTSDB

The OpenTSDB plugin is designed to send metrics to an OpenTSDB instance using either the telnet or HTTP mode. With the introduction of OpenTSDB 2.0, the recommended method for sending metrics is via the HTTP API, which allows for batch processing of metrics by configuring the ‘http_batch_size’. The plugin supports several configuration options including metrics prefixing, server host and port specification, URI path customization for reverse proxies, and debug options for diagnosing communication issues with OpenTSDB. This plugin is particularly useful in scenarios where time series data is generated and needs to be efficiently stored in a scalable time series database like OpenTSDB, making it suitable for a wide range of monitoring and analytics applications.

Configuration

Arista LANZ

[[inputs.lanz]]
  ## URL to Arista LANZ endpoint
  servers = [
    "tcp://switch1.int.example.com:50001",
    "tcp://switch2.int.example.com:50001",
  ]

OpenTSDB

[[outputs.opentsdb]]
  ## prefix for metrics keys
  prefix = "my.specific.prefix."

  ## DNS name of the OpenTSDB server
  ## Using "opentsdb.example.com" or "tcp://opentsdb.example.com" will use the
  ## telnet API. "http://opentsdb.example.com" will use the Http API.
  host = "opentsdb.example.com"

  ## Port of the OpenTSDB server
  port = 4242

  ## Number of data points to send to OpenTSDB in Http requests.
  ## Not used with telnet API.
  http_batch_size = 50

  ## URI Path for Http requests to OpenTSDB.
  ## Used in cases where OpenTSDB is located behind a reverse proxy.
  http_path = "/api/put"

  ## Debug true - Prints OpenTSDB communication
  debug = false

  ## Separator separates measurement name from field
  separator = "_"

Input and output integration examples

Arista LANZ

  1. Real-Time Latency Monitoring: This plugin can be used to set up a monitoring dashboard that tracks real-time latency metrics across multiple interfaces. By gathering and visualizing this data, network admins can swiftly identify and rectify latency issues before they impact service quality. The challenge lies in efficiently handling the influx of metrics from various sources without overwhelming the infrastructure or incurring excessive processing delays.

  2. Congestion Analysis for Traffic Engineering: Users can leverage the LANZ plugin to analyze congestion records, enabling the optimization of network traffic flows. By applying historical pattern recognition to the metrics collected, IT teams can make informed decisions on traffic management strategies, thus improving overall network efficiency. This requires implementing robust data storage and analysis capabilities to derive actionable insights from the raw metrics.

  3. Integration with Alerting Systems: Integrate the metrics from this plugin with alerting systems to automatically notify network engineers of any significant changes in latency or congestion. By setting thresholds based on historical data trends, this use case enhances proactive incident management, allowing teams to address potential issues proactively. The technical challenge here is establishing the right balance in threshold settings to minimize false positives while ensuring genuine issues are flagged promptly.

  4. Network Optimization Reports: Utilize the metrics gathered through the LANZ plugin to generate periodic reports that detail network performance, latency trends, and congestion events. These reports can help stakeholders understand network health over time and guide infrastructure investments. The challenge involves structuring and formatting the output data to make it comprehensible and actionable for various audiences.

OpenTSDB

  1. Real-time Infrastructure Monitoring: Utilize the OpenTSDB plugin to collect and store metrics from various infrastructure components. By configuring the plugin to push metrics to OpenTSDB, organizations can have a centralized view of their infrastructure health and performance over time.

  2. Custom Application Metrics Tracking: Integrate the OpenTSDB plugin into custom applications to track key performance indicators (KPIs) such as response times, error rates, and user interactions. This setup allows developers and product teams to visualize application performance trends and make data-driven decisions.

  3. Automated Anomaly Detection: Leverage the plugin in conjunction with machine learning algorithms to automatically detect anomalies in time-series data sent to OpenTSDB. By continuously monitoring the incoming metrics, the system can train models that alert users to potential issues before they affect application performance.

  4. Historical Data Analysis: Use the OpenTSDB plugin to store and analyze historical performance data for capacity planning and trend analysis. This provides valuable insights into system behavior over time, helping teams to understand usage patterns and prepare for future growth.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration