Arista LANZ and ServiceNow Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Arista LANZ plugin is designed for reading latency and congestion metrics from Arista LANZ, helping users monitor their network performance effectively.
This output plugin streams metrics from Telegraf directly to a ServiceNow MID Server via HTTP, leveraging the nowmetric
serializer for efficient integration with ServiceNow’s Operational Intelligence and Event Management.
Integration details
Arista LANZ
This plugin provides a consumer for use with Arista Networks’ Latency Analyzer (LANZ). Metrics are read from a stream of data via TCP through port 50001 on the switches management IP. The data is in Protobuffers format, allowing for efficient transportation and parsing of data. LANZ is utilized to monitor network latency and congestion in real-time, which is vital for maintaining optimal performance in networking environments. The underlying technology, Arista’s latency analysis, provides insights into various network operations and infrastructure behaviors, making it a crucial tool for network engineering and management.
ServiceNow
Telegraf can be used to send metric data directly to a ServiceNow MID Server REST endpoint. Metrics are formatted either using ServiceNow’s Operational Intelligence (OI) format or JSONv2 format, enabling seamless integration with ServiceNow’s Event Management and Operational Intelligence platforms. The serializer batches metrics efficiently, reducing network overhead by minimizing the number of HTTP POST requests. This integration allows users to quickly leverage metrics in ServiceNow for enhanced observability, proactive incident management, and performance monitoring, with ServiceNow’s operational intelligence capabilities.
Configuration
Arista LANZ
[[inputs.lanz]]
## URL to Arista LANZ endpoint
servers = [
"tcp://switch1.int.example.com:50001",
"tcp://switch2.int.example.com:50001",
]
ServiceNow
[[outputs.http]]
## ServiceNow MID Server metrics endpoint
url = "http://mid-server.example.com:9082/api/mid/sa/metrics"
## HTTP request method
method = "POST"
## Basic Authentication credentials
username = "evt.integration"
password = "P@$$w0rd!"
## Data serialization format for ServiceNow
data_format = "nowmetric"
## Metric format type: "oi" (default) or "jsonv2"
nowmetric_format = "oi"
## HTTP Headers
[outputs.http.headers]
Content-Type = "application/json"
Accept = "application/json"
## Optional timeout
# timeout = "5s"
## TLS configuration options
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
Input and output integration examples
Arista LANZ
-
Real-Time Latency Monitoring: This plugin can be used to set up a monitoring dashboard that tracks real-time latency metrics across multiple interfaces. By gathering and visualizing this data, network admins can swiftly identify and rectify latency issues before they impact service quality. The challenge lies in efficiently handling the influx of metrics from various sources without overwhelming the infrastructure or incurring excessive processing delays.
-
Congestion Analysis for Traffic Engineering: Users can leverage the LANZ plugin to analyze congestion records, enabling the optimization of network traffic flows. By applying historical pattern recognition to the metrics collected, IT teams can make informed decisions on traffic management strategies, thus improving overall network efficiency. This requires implementing robust data storage and analysis capabilities to derive actionable insights from the raw metrics.
-
Integration with Alerting Systems: Integrate the metrics from this plugin with alerting systems to automatically notify network engineers of any significant changes in latency or congestion. By setting thresholds based on historical data trends, this use case enhances proactive incident management, allowing teams to address potential issues proactively. The technical challenge here is establishing the right balance in threshold settings to minimize false positives while ensuring genuine issues are flagged promptly.
-
Network Optimization Reports: Utilize the metrics gathered through the LANZ plugin to generate periodic reports that detail network performance, latency trends, and congestion events. These reports can help stakeholders understand network health over time and guide infrastructure investments. The challenge involves structuring and formatting the output data to make it comprehensible and actionable for various audiences.
ServiceNow
-
Proactive Incident Management: Utilize the Telegraf and ServiceNow integration to stream infrastructure and application metrics in real-time to ServiceNow Event Management. Automatically trigger incidents or remediation workflows based on thresholds, significantly reducing incident detection and response times.
-
End-to-End Application Monitoring: Deploy Telegraf agents across multiple layers of an application stack, sending performance metrics directly into ServiceNow. Leveraging ServiceNow’s Operational Intelligence, teams can correlate metrics across components, quickly identifying performance bottlenecks.
-
Dynamic CI Performance Tracking: Integrate Telegraf metrics with ServiceNow’s CMDB by using this plugin to push performance data, allowing automatic updates of Configuration Item (CI) health states based on live metrics. This ensures an accurate and current state of infrastructure health in ServiceNow.
-
Cloud Resource Optimization: Collect metrics from hybrid and multi-cloud infrastructures using Telegraf, streaming directly to ServiceNow. Leverage these metrics for real-time analytics, predictive capacity planning, and resource optimization, enabling proactive management and reduced operational costs.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration