Arista LANZ and Thanos Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Arista LANZ and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Arista LANZ plugin is designed for reading latency and congestion metrics from Arista LANZ, helping users monitor their network performance effectively.

This plugin sends metrics from Telegraf to Thanos using the Prometheus remote write protocol over HTTP, allowing efficient and scalable ingestion into Thanos Receive components.

Integration details

Arista LANZ

This plugin provides a consumer for use with Arista Networks’ Latency Analyzer (LANZ). Metrics are read from a stream of data via TCP through port 50001 on the switches management IP. The data is in Protobuffers format, allowing for efficient transportation and parsing of data. LANZ is utilized to monitor network latency and congestion in real-time, which is vital for maintaining optimal performance in networking environments. The underlying technology, Arista’s latency analysis, provides insights into various network operations and infrastructure behaviors, making it a crucial tool for network engineering and management.

Thanos

Telegraf’s HTTP plugin can send metrics directly to Thanos via its Remote Write-compatible Receive component. By setting the data format to prometheusremotewrite, Telegraf can serialize metrics into the same protobuf-based format used by native Prometheus clients. This setup enables high-throughput, low-latency metric ingestion into Thanos, facilitating centralized observability at scale. It is particularly useful in hybrid environments where Telegraf is collecting metrics from systems outside Prometheus’ native reach, such as SNMP devices, Windows hosts, or custom apps, and streams them directly to Thanos for long-term storage and global querying.

Configuration

Arista LANZ

[[inputs.lanz]]
  ## URL to Arista LANZ endpoint
  servers = [
    "tcp://switch1.int.example.com:50001",
    "tcp://switch2.int.example.com:50001",
  ]

Thanos

[[outputs.http]]
  ## Thanos Receive endpoint for remote write
  url = "http://thanos-receive.example.com/api/v1/receive"

  ## HTTP method
  method = "POST"

  ## Data format set to Prometheus remote write
  data_format = "prometheusremotewrite"

  ## Optional headers (authorization, etc.)
  # [outputs.http.headers]
  #   Authorization = "Bearer YOUR_TOKEN"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

  ## Request timeout
  timeout = "10s"

Input and output integration examples

Arista LANZ

  1. Real-Time Latency Monitoring: This plugin can be used to set up a monitoring dashboard that tracks real-time latency metrics across multiple interfaces. By gathering and visualizing this data, network admins can swiftly identify and rectify latency issues before they impact service quality. The challenge lies in efficiently handling the influx of metrics from various sources without overwhelming the infrastructure or incurring excessive processing delays.

  2. Congestion Analysis for Traffic Engineering: Users can leverage the LANZ plugin to analyze congestion records, enabling the optimization of network traffic flows. By applying historical pattern recognition to the metrics collected, IT teams can make informed decisions on traffic management strategies, thus improving overall network efficiency. This requires implementing robust data storage and analysis capabilities to derive actionable insights from the raw metrics.

  3. Integration with Alerting Systems: Integrate the metrics from this plugin with alerting systems to automatically notify network engineers of any significant changes in latency or congestion. By setting thresholds based on historical data trends, this use case enhances proactive incident management, allowing teams to address potential issues proactively. The technical challenge here is establishing the right balance in threshold settings to minimize false positives while ensuring genuine issues are flagged promptly.

  4. Network Optimization Reports: Utilize the metrics gathered through the LANZ plugin to generate periodic reports that detail network performance, latency trends, and congestion events. These reports can help stakeholders understand network health over time and guide infrastructure investments. The challenge involves structuring and formatting the output data to make it comprehensible and actionable for various audiences.

Thanos

  1. Agentless Cloud Monitoring: Deploy Telegraf agents across cloud VMs to collect system and application metrics, then stream them directly into Thanos using Remote Write. This provides centralized observability without requiring Prometheus nodes at each location.

  2. Scalable Windows Host Monitoring: Use Telegraf on Windows machines to collect OS-level metrics and send them via Remote Write to Thanos Receive. This enables observability across heterogeneous environments with native Prometheus support only on Linux.

  3. Cross-Region Metrics Federation: Telegraf agents in multiple geographic regions can push data to region-local Thanos Receivers using this plugin. From there, Thanos can deduplicate and query metrics globally, reducing latency and network egress costs.

  4. Integrating Third-Party Data into Thanos: Collect metrics from custom telemetry sources such as REST APIs or proprietary logs using Telegraf inputs and forward them to Thanos via Remote Write. This brings non-native data into a Prometheus-compatible, long-term analytics pipeline.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration