AWS Data Firehose and Azure Application Insights Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin listens for metrics sent via HTTP from AWS Data Firehose in supported data formats, providing real-time data ingestion capabilities.
This plugin writes Telegraf metrics to Azure Application Insights, enabling powerful monitoring and diagnostics.
Integration details
AWS Data Firehose
The AWS Data Firehose Telegraf plugin is designed to receive metrics from AWS Data Firehose via HTTP. This plugin listens for incoming data in various formats and processes it according to the request-response schema outlined in the official AWS documentation. Unlike standard input plugins that operate on a fixed interval, this service plugin initializes a listener that remains active, waiting for incoming metrics. This allows for real-time data ingestion from AWS Data Firehose, making it suitable for scenarios where immediate data processing is required. Key features include the ability to specify service addresses, paths, and support for TLS connections for secure data transmission. Additionally, the plugin accommodates optional authentication keys and custom tags, enhancing its flexibility in various use cases involving data streaming and processing.
Azure Application Insights
The Azure Application Insights plugin integrates Telegraf with Azure’s Application Insights service, facilitating the seamless transmission of metrics from various sources to a centralized monitoring platform. This plugin empowers users to harness the capabilities of Azure Application Insights, a powerful application performance management tool, allowing developers and IT operations teams to gain valuable insights into the performance, availability, and usage of their applications. By employing this plugin, users can monitor application telemetry and operational data efficiently, contributing to better diagnostics and improved application performance.
Key features of this plugin include the ability to specify an instrumentation key for the Application Insights resource, configure the endpoint URL for tracking, and enable additional diagnostic logging for a more comprehensive analysis. Furthermore, the plugin provides context tagging capabilities, allowing the addition of specific Application Insights context tags to enhance the contextual information associated with metrics being sent. These features collectively make the Azure Application Insights Output Plugin a vital tool for organizations looking to optimize their monitoring capabilities within Azure.
Configuration
AWS Data Firehose
[[inputs.firehose]]
## Address and port to host HTTP listener on
service_address = ":8080"
## Paths to listen to.
# paths = ["/telegraf"]
## maximum duration before timing out read of the request
# read_timeout = "5s"
## maximum duration before timing out write of the response
# write_timeout = "5s"
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Add service certificate and key
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Minimal TLS version accepted by the server
# tls_min_version = "TLS12"
## Optional access key to accept for authentication.
## AWS Data Firehose uses "x-amz-firehose-access-key" header to set the access key.
## If no access_key is provided (default), authentication is completely disabled and
## this plugin will accept all request ignoring the provided access-key in the request!
# access_key = "foobar"
## Optional setting to add parameters as tags
## If the http header "x-amz-firehose-common-attributes" is not present on the
## request, no corresponding tag will be added. The header value should be a
## json and should follow the schema as describe in the official documentation:
## https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html#requestformat
# parameter_tags = ["env"]
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
# data_format = "influx"
Azure Application Insights
[[outputs.application_insights]]
## Instrumentation key of the Application Insights resource.
instrumentation_key = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx"
## Regions that require endpoint modification https://docs.microsoft.com/en-us/azure/azure-monitor/app/custom-endpoints
# endpoint_url = "https://dc.services.visualstudio.com/v2/track"
## Timeout for closing (default: 5s).
# timeout = "5s"
## Enable additional diagnostic logging.
# enable_diagnostic_logging = false
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of
## the table
## Context Tag Sources add Application Insights context tags to a tag value.
##
## For list of allowed context tag keys see:
## https://github.com/microsoft/ApplicationInsights-Go/blob/master/appinsights/contracts/contexttagkeys.go
# [outputs.application_insights.context_tag_sources]
# "ai.cloud.role" = "kubernetes_container_name"
# "ai.cloud.roleInstance" = "kubernetes_pod_name"
Input and output integration examples
AWS Data Firehose
-
Real-Time Data Analytics: Using the AWS Data Firehose plugin, organizations can stream data in real-time from various sources, such as application logs or IoT devices, directly into analytics platforms. This allows data teams to analyze incoming data as it is generated, enabling rapid insights and operational adjustments based on fresh metrics.
-
Profile Access Patterns for Optimization: By collecting data about how clients interact with applications through AWS Data Firehose, businesses can gain valuable insights into user behavior. This can drive content personalization strategies or optimize server architecture for better performance based on traffic patterns.
-
Automated Alerting Mechanism: Integrating AWS Data Firehose with alerting systems via this plugin allows teams to set up automated alerts based on specific metrics collected. For example, if a particular threshold is reached in the input data, alerts can trigger operations teams to investigate potential issues before they escalate.
Azure Application Insights
-
Application Performance Monitoring: Utilize the Azure Application Insights plugin to continuously monitor the performance of your web applications or microservices. By sending Telegraf metrics directly to Application Insights, teams can visualize real-time application performance data, enabling proactive tuning and optimization of application resources. This setup not only enhances the reliability of applications but also ensures user satisfaction through consistent performance monitoring.
-
Integrated Logging and Telemetry: Combine this plugin with centralized logging solutions to provide a comprehensive observability stack. By sending telecom data to Azure Application Insights, teams can correlate performance metrics with log data and gain deeper insights into application behavior, allowing for more efficient troubleshooting and root cause analysis.
-
Contextual Monitoring of Cloud Resources: Use the context tagging feature to enrich your application metrics with specific contextual information related to your cloud environment. This enhanced context can be invaluable for understanding the performance of cloud-native applications, enabling better scaling decisions and resource management based on real usage patterns.
-
Real-time Alerts Setup: Configure Application Insights to trigger alerts based on specific metrics received via this plugin. This allows teams to be notified of performance degradation or anomalies in real-time, enabling immediate action to mitigate issues and maintain high availability of applications.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration