AWS Data Firehose and Zabbix Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider AWS Data Firehose and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin listens for metrics sent via HTTP from AWS Data Firehose in supported data formats, providing real-time data ingestion capabilities.

This plugin sends metrics to Zabbix via traps, allowing for efficient monitoring of systems and applications. It supports automated configuration and data sending based on dynamic metrics collected by Telegraf.

Integration details

AWS Data Firehose

The AWS Data Firehose Telegraf plugin is designed to receive metrics from AWS Data Firehose via HTTP. This plugin listens for incoming data in various formats and processes it according to the request-response schema outlined in the official AWS documentation. Unlike standard input plugins that operate on a fixed interval, this service plugin initializes a listener that remains active, waiting for incoming metrics. This allows for real-time data ingestion from AWS Data Firehose, making it suitable for scenarios where immediate data processing is required. Key features include the ability to specify service addresses, paths, and support for TLS connections for secure data transmission. Additionally, the plugin accommodates optional authentication keys and custom tags, enhancing its flexibility in various use cases involving data streaming and processing.

Zabbix

The Telegraf Zabbix plugin is designed to send metrics to Zabbix, an open-source monitoring solution, using the trap protocol. It supports various versions from 3.0 to 6.0, ensuring compatibility with recent updates. The plugin facilitates easy integration with the Zabbix ecosystem, allowing users to send collected metrics and monitor system performance seamlessly. Key functionalities include the ability to define the address and port of the Zabbix server, options for prefixing keys, determining the type of data sent (active vs. trapper), and features for low-level discovery (LLD) enabling dynamic item creation based on the metrics observed. Configuration options also allow for autoregistration and resending intervals for LLD data, ensuring that the metrics are up-to-date and relevant. Additionally, the trap format used for sending metrics is structured to facilitate efficient data transfer and processing in Zabbix.

Configuration

AWS Data Firehose

[[inputs.firehose]]
  ## Address and port to host HTTP listener on
  service_address = ":8080"

  ## Paths to listen to.
  # paths = ["/telegraf"]

  ## maximum duration before timing out read of the request
  # read_timeout = "5s"
  ## maximum duration before timing out write of the response
  # write_timeout = "5s"

  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Add service certificate and key
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

  ## Minimal TLS version accepted by the server
  # tls_min_version = "TLS12"

  ## Optional access key to accept for authentication.
  ## AWS Data Firehose uses "x-amz-firehose-access-key" header to set the access key.
  ## If no access_key is provided (default), authentication is completely disabled and
  ## this plugin will accept all request ignoring the provided access-key in the request!
  # access_key = "foobar"

  ## Optional setting to add parameters as tags
  ## If the http header "x-amz-firehose-common-attributes" is not present on the
  ## request, no corresponding tag will be added. The header value should be a
  ## json and should follow the schema as describe in the official documentation:
  ## https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html#requestformat
  # parameter_tags = ["env"]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  # data_format = "influx"

Zabbix

[[outputs.zabbix]]
  ## Address and (optional) port of the Zabbix server
  address = "zabbix.example.com:10051"

  ## Send metrics as type "Zabbix agent (active)"
  # agent_active = false

  ## Add prefix to all keys sent to Zabbix.
  # key_prefix = "telegraf."

  ## Name of the tag that contains the host name. Used to set the host in Zabbix.
  ## If the tag is not found, use the hostname of the system running Telegraf.
  # host_tag = "host"

  ## Skip measurement prefix to all keys sent to Zabbix.
  # skip_measurement_prefix = false

  ## This field will be sent as HostMetadata to Zabbix Server to autoregister the host.
  ## To enable this feature, this option must be set to a value other than "".
  # autoregister = ""

  ## Interval to resend auto-registration data to Zabbix.
  ## Only applies if autoregister feature is enabled.
  ## This value is a lower limit, the actual resend should be triggered by the next flush interval.
  # autoregister_resend_interval = "30m"

  ## Interval to send LLD data to Zabbix.
  ## This value is a lower limit, the actual resend should be triggered by the next flush interval.
  # lld_send_interval = "10m"

  ## Interval to delete stored LLD known data and start capturing it again.
  ## This value is a lower limit, the actual resend should be triggered by the next flush interval.
  # lld_clear_interval = "1h"

Input and output integration examples

AWS Data Firehose

  1. Real-Time Data Analytics: Using the AWS Data Firehose plugin, organizations can stream data in real-time from various sources, such as application logs or IoT devices, directly into analytics platforms. This allows data teams to analyze incoming data as it is generated, enabling rapid insights and operational adjustments based on fresh metrics.

  2. Profile Access Patterns for Optimization: By collecting data about how clients interact with applications through AWS Data Firehose, businesses can gain valuable insights into user behavior. This can drive content personalization strategies or optimize server architecture for better performance based on traffic patterns.

  3. Automated Alerting Mechanism: Integrating AWS Data Firehose with alerting systems via this plugin allows teams to set up automated alerts based on specific metrics collected. For example, if a particular threshold is reached in the input data, alerts can trigger operations teams to investigate potential issues before they escalate.

Zabbix

  1. Dynamic Monitoring of Containerized Applications: Integration of the Zabbix plugin can be leveraged to monitor Docker containers dynamically. As containers are created and removed, the plugin can automatically update Zabbix with the appropriate metrics, ensuring that monitoring stays current without manual configuration. This enhances visibility into resource usage and performance metrics for microservices orchestrated with Kubernetes or Docker Swarm.

  2. Real-Time Performance Monitoring with Auto-registration: By enabling the autoregister feature, the plugin can automatically register hosts in Zabbix based on the metrics received. This scenario provides a streamlined approach to add new hosts to monitoring without manual setup, which is particularly useful in environments where hosts may frequently spin up and down, such as serverless architectures or cloud-based deployments.

  3. Leveraging Low-level Discovery for Flexible Metric Capture: Using low-level discovery, this plugin allows Zabbix to adaptively create items for metrics that are not predefined. In a scenario involving multiple network devices reporting different performance metrics, the plugin can dynamically inform Zabbix about new metrics as they appear, thus ensuring comprehensive monitoring capabilities that evolve with the monitored systems.

  4. Centralized Monitoring of Distributed Systems: The Zabbix plugin can be utilized in a centralized monitoring setup for distributed systems where multiple Telegraf instances are running across different geographical locations. By sending all metrics to a central Zabbix server, organizations can achieve a holistic view of their infrastructure’s performance and make informed operational decisions.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration