Azure Monitor and OpenObserve Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Azure Monitor and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

Gather metrics from Azure resources using the Azure Monitor API.

This configuration pairs Telegraf’s HTTP output with OpenObserve’s native JSON ingestion API, turning any Telegraf agent into a first-class OpenObserve collector.

Integration details

Azure Monitor

The Azure Monitor Telegraf plugin is specifically designed for gathering metrics from various Azure resources using the Azure Monitor API. Users must provide specific credentials such as client_id, client_secret, tenant_id, and subscription_id to authenticate and gain access to their Azure resources. Additionally, the plugin supports functionality to collect metrics from both individual resources and resource groups or subscriptions, allowing for flexible and scalable metric collection tailored to user needs. This plugin is ideal for organizations leveraging Azure cloud infrastructure, providing crucial insights into resource performance and utilization over time, facilitating proactive management and optimization of cloud resources.

OpenObserve

OpenObserve is an open source observability platform written in Rust that stores data cost-effectively on object storage or local disk. It exposes REST endpoints such as /api/{org}/ingest/metrics/_json that accept batched metric documents conforming to a concise JSON schema, making it an attractive drop-in replacement for Loki or Elasticsearch stacks. The Telegraf HTTP output plugin streams metrics to arbitrary HTTP targets; when the "data_format = "json"" serializer is selected, Telegraf batches its metric objects into a payload that matches OpenObserve’s ingestion contract. The plugin supports configurable batch size, custom headers, TLS, and compression, allowing operators to authenticate with Basic or Bearer tokens and to enforce back-pressure without additional collectors. By reusing existing Telegraf agents already collecting system, application, or SNMP data, organizations can funnel rich telemetry into OpenObserve dashboards and SQL-like analytics with minimal overhead, enabling unified observability, long-term retention, and real-time alerting without vendor lock-in.

Configuration

Azure Monitor

# Gather Azure resources metrics from Azure Monitor API
[[inputs.azure_monitor]]
  # can be found under Overview->Essentials in the Azure portal for your application/service
  subscription_id = "<>"
  # can be obtained by registering an application under Azure Active Directory
  client_id = "<>"
  # can be obtained by registering an application under Azure Active Directory.
  # If not specified Default Azure Credentials chain will be attempted:
  # - Environment credentials (AZURE_*)
  # - Workload Identity in Kubernetes cluster
  # - Managed Identity
  # - Azure CLI auth
  # - Developer Azure CLI auth
  client_secret = "<>"
  # can be found under Azure Active Directory->Properties
  tenant_id = "<>"
  # Define the optional Azure cloud option e.g. AzureChina, AzureGovernment or AzurePublic. The default is AzurePublic.
  # cloud_option = "AzurePublic"

  # resource target #1 to collect metrics from
  [[inputs.azure_monitor.resource_target]]
    # can be found under Overview->Essentials->JSON View in the Azure portal for your application/service
    # must start with 'resourceGroups/...' ('/subscriptions/xxxxxxxx-xxxx-xxxx-xxx-xxxxxxxxxxxx'
    # must be removed from the beginning of Resource ID property value)
    resource_id = "<>"
    # the metric names to collect
    # leave the array empty to use all metrics available to this resource
    metrics = [ "<>", "<>" ]
    # metrics aggregation type value to collect
    # can be 'Total', 'Count', 'Average', 'Minimum', 'Maximum'
    # leave the array empty to collect all aggregation types values for each metric
    aggregations = [ "<>", "<>" ]

  # resource target #2 to collect metrics from
  [[inputs.azure_monitor.resource_target]]
    resource_id = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]

  # resource group target #1 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.resource_group_target]]
    # the resource group name
    resource_group = "<>"

    # defines the resources to collect metrics from
    [[inputs.azure_monitor.resource_group_target.resource]]
      # the resource type
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

    # defines the resources to collect metrics from
    [[inputs.azure_monitor.resource_group_target.resource]]
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

  # resource group target #2 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.resource_group_target]]
    resource_group = "<>"

    [[inputs.azure_monitor.resource_group_target.resource]]
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

  # subscription target #1 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.subscription_target]]
    resource_type = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]

  # subscription target #2 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.subscription_target]]
    resource_type = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]
</code></pre>

OpenObserve

[[outputs.http]]
  ## OpenObserve JSON metrics ingestion endpoint
  url = "https://api.openobserve.ai/api/default/ingest/metrics/_json"

  ## Use POST to push batches
  method = "POST"

  ## Basic auth header (base64 encoded "username:password")
  headers = { Authorization = "Basic dXNlcjpwYXNzd29yZA==" }

  ## Timeout for HTTP requests
  timeout = "10s"

  ## Override Content-Type to match OpenObserve expectation
  content_type = "application/json"

  ## Force Telegraf to batch and serialize metrics as JSON
  data_format = "json"

  ## JSON serializer specific options
  json_timestamp_units = "1ms"

  ## Uncomment to restrict batch size
  # batch_size = 5000

Input and output integration examples

Azure Monitor

  1. Dynamic Resource Monitoring: Use the Azure Monitor plugin to dynamically gather metrics from Azure resources based on specific criteria like tags or resource types. Organizations can automate the process of loading and unloading resource metrics, enabling better performance tracking and optimization based on resource utilization patterns.

  2. Multi-Cloud Monitoring Integration: Integrate metrics collected from Azure Monitor with other cloud providers using a centralized monitoring solution. This allows organizations to view and analyze performance data across multiple cloud deployments, providing a holistic overview of resource performance and costs, and streamlining operations.

  3. Anomaly Detection and Alerting: Leverage the metrics gathered via the Azure Monitor plugin in conjunction with machine learning algorithms to detect anomalies in resource utilization. By establishing baseline performance metrics and automatically alerting on deviations, organizations can mitigate risks and address performance issues before they escalate.

  4. Historical Performance Analysis: Use the collected Azure metrics to conduct historical analysis by feeding the data into a data warehousing solution. This enables organizations to track trends over time, allowing for detailed reporting and decision-making based on historical performance data.

OpenObserve

  1. Edge Device Health Mirror: Deploy Telegraf on thousands of industrial IoT devices to capture temperature, vibration, and power metrics, then use this output to push JSON batches to OpenObserve. Plant operators gain a real-time overview of machine health and can trigger maintenance based on anomalies without relying on heavyweight collectors.

  2. Blue-Green Deployment Canary: Attach a lightweight Telegraf sidecar to each Kubernetes release-candidate pod that scrapes /metrics and forwards container stats to a dedicated “canary” stream in OpenObserve. Continuous comparison of error rates between blue and green versions empowers the CI pipeline to auto-roll back poor performers within seconds.

  3. Multi-Tenant SaaS Billing Pipeline: Emit per-customer usage counters via Telegraf and tag them with tenant_id; the HTTP plugin posts them to OpenObserve where SQL reports aggregate usage into invoices, eliminating separate metering services and simplifying compliance audits.

  4. Security Threat Scoring: Fuse Suricata events and host resource metrics in Telegraf, deliver them to OpenObserve’s analytics engine, and run stream-processing rules that correlate spikes in suspicious traffic with CPU saturation to produce an actionable threat score and automatically open tickets in a SOAR platform.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration