Azure Storage Queue and Apache Druid Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers sizes of Azure Storage Queues, providing users with metrics that enhance observability and management of their storage resources.
This plugin allows Telegraf to send JSON-formatted metrics to Apache Druid over HTTP, enabling real-time ingestion for analytical queries on high-volume time-series data.
Integration details
Azure Storage Queue
The Azure Storage Queue plugin allows users to gather various metrics concerning the size and message age of Azure Storage Queues. This plugin connects to Azure Storage, requiring specific credentials and offers configurable options to enhance performance. By collecting metrics, users gain valuable insights into the performance of their storage queues, enabling them to monitor usage patterns, peak loads, and optimize storage management effectively. The integration with Azure’s storage infrastructure provides a straightforward way to monitor queue metrics, ensuring that users can react to changes promptly, maintaining the efficiency and reliability of their applications.
Apache Druid
This configuration uses Telegraf’s HTTP output plugin with json
data format to send metrics directly to Apache Druid, a real-time analytics database designed for fast, ad hoc queries on high-ingest time-series data. Druid supports ingestion via HTTP POST to various components like the Tranquility service or native ingestion endpoints. The JSON format is ideal for structuring Telegraf metrics into event-style records for Druid’s columnar and time-partitioned storage engine. Druid excels at powering interactive dashboards and exploratory queries across massive datasets, making it an excellent choice for real-time observability and monitoring analytics when integrated with Telegraf.
Configuration
Azure Storage Queue
[[inputs.azure_storage_queue]]
## Required Azure Storage Account name
account_name = "mystorageaccount"
## Required Azure Storage Account access key
account_key = "storageaccountaccesskey"
## Set to false to disable peeking age of oldest message (executes faster)
# peek_oldest_message_age = true
Apache Druid
[[outputs.http]]
## Druid ingestion endpoint (e.g., Tranquility, HTTP Ingest, or Kafka REST Proxy)
url = "http://druid-ingest.example.com/v1/post"
## Use POST method to send events
method = "POST"
## Data format for Druid ingestion (expects JSON format)
data_format = "json"
## Optional headers (may vary depending on Druid setup)
# [outputs.http.headers]
# Content-Type = "application/json"
# Authorization = "Bearer YOUR_API_TOKEN"
## Optional timeout and TLS settings
timeout = "10s"
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
Input and output integration examples
Azure Storage Queue
-
Monitoring Queue Performance in Real-time: Use the Azure Storage Queue plugin to continuously track the size and age of messages in queues, providing operators with real-time insights. This information can help teams understand throughput and delays, enabling them to adjust processing rates or troubleshoot bottlenecks.
-
Dynamic Alerting Based on Queue Metrics: Integrate metrics from the Azure Storage Queue plugin into an alerting system. By defining thresholds for message age and queue size, organizations can automate notifications, ensuring they promptly address situations where queues become too long or messages are delayed, maintaining a healthy and responsive system environment.
-
Optimizing Cost Management: Leverage the insights from the Azure Storage Queue metrics to identify periods of inactivity and implement cost-saving measures by adjusting storage scales. By analyzing queue size trends, organizations can make informed decisions about resource allocation, effectively balancing performance needs with cost efficiency.
-
Enhancing Application Fault Tolerance: Use the age metrics of the oldest message to design smarter retry strategies within applications. In scenarios where message processing fails, understanding how long messages sit in the queue allows developers to fine-tune their error handling logic, enhancing the resilience and reliability of their applications.
Apache Druid
-
Real-Time Application Monitoring Dashboard: Use Telegraf to collect metrics from application servers and send them to Druid for immediate analysis and visualization in dashboards. Druid’s low-latency querying allows users to interactively explore system behavior in near real-time.
-
Security Event Aggregation: Aggregate and forward security-related metrics such as failed logins, port scans, or process anomalies to Druid. Analysts can build dashboards to monitor threat patterns and investigate incidents with millisecond-level granularity.
-
IoT Device Analytics: Collect telemetry from edge devices via Telegraf and send it to Druid for fast, scalable processing. Druid’s time-partitioned storage and roll-up capabilities are ideal for handling billions of small JSON events from sensors or gateways.
-
Web Traffic Behavior Exploration: Use Telegraf to capture web server metrics (e.g., requests per second, latency, error rates) and forward them to Druid. This enables teams to drill down into user behavior by region, device, or request type with subsecond query performance.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration