Azure Storage Queue and Google BigQuery Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers sizes of Azure Storage Queues, providing users with metrics that enhance observability and management of their storage resources.
The Google BigQuery plugin allows Telegraf to write metrics to Google Cloud BigQuery, enabling robust data analytics capabilities for telemetry data.
Integration details
Azure Storage Queue
The Azure Storage Queue plugin allows users to gather various metrics concerning the size and message age of Azure Storage Queues. This plugin connects to Azure Storage, requiring specific credentials and offers configurable options to enhance performance. By collecting metrics, users gain valuable insights into the performance of their storage queues, enabling them to monitor usage patterns, peak loads, and optimize storage management effectively. The integration with Azure’s storage infrastructure provides a straightforward way to monitor queue metrics, ensuring that users can react to changes promptly, maintaining the efficiency and reliability of their applications.
Google BigQuery
The Google BigQuery plugin for Telegraf enables seamless integration with Google Cloud’s BigQuery service, a popular data warehousing and analytics platform. This plugin facilitates the transfer of metrics collected by Telegraf into BigQuery datasets, making it easier for users to perform analyses and generate insights from their telemetry data. It requires authentication through a service account or user credentials and is designed to handle various data types, ensuring that users can maintain the integrity and accuracy of their metrics as they are stored in BigQuery tables. The configuration options allow for customization around dataset specifications and handling metrics, including the management of hyphens in metric names, which are not supported by BigQuery for streaming inserts. This plugin is particularly useful for organizations leveraging the scalability and powerful query capabilities of BigQuery to analyze large volumes of monitoring data.
Configuration
Azure Storage Queue
[[inputs.azure_storage_queue]]
## Required Azure Storage Account name
account_name = "mystorageaccount"
## Required Azure Storage Account access key
account_key = "storageaccountaccesskey"
## Set to false to disable peeking age of oldest message (executes faster)
# peek_oldest_message_age = true
Google BigQuery
# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
## Credentials File
credentials_file = "/path/to/service/account/key.json"
## Google Cloud Platform Project
# project = ""
## The namespace for the metric descriptor
dataset = "telegraf"
## Timeout for BigQuery operations.
# timeout = "5s"
## Character to replace hyphens on Metric name
# replace_hyphen_to = "_"
## Write all metrics in a single compact table
# compact_table = ""
Input and output integration examples
Azure Storage Queue
-
Monitoring Queue Performance in Real-time: Use the Azure Storage Queue plugin to continuously track the size and age of messages in queues, providing operators with real-time insights. This information can help teams understand throughput and delays, enabling them to adjust processing rates or troubleshoot bottlenecks.
-
Dynamic Alerting Based on Queue Metrics: Integrate metrics from the Azure Storage Queue plugin into an alerting system. By defining thresholds for message age and queue size, organizations can automate notifications, ensuring they promptly address situations where queues become too long or messages are delayed, maintaining a healthy and responsive system environment.
-
Optimizing Cost Management: Leverage the insights from the Azure Storage Queue metrics to identify periods of inactivity and implement cost-saving measures by adjusting storage scales. By analyzing queue size trends, organizations can make informed decisions about resource allocation, effectively balancing performance needs with cost efficiency.
-
Enhancing Application Fault Tolerance: Use the age metrics of the oldest message to design smarter retry strategies within applications. In scenarios where message processing fails, understanding how long messages sit in the queue allows developers to fine-tune their error handling logic, enhancing the resilience and reliability of their applications.
Google BigQuery
-
Real-Time Analytics Dashboard: Leverage the Google BigQuery plugin to feed live metrics into a custom analytics dashboard hosted on Google Cloud. This setup would allow teams to visualize performance data in real-time, providing insights into system health and usage patterns. By using BigQuery’s querying capabilities, users can easily create tailored reports and dashboards to meet their specific needs, thus enhancing decision-making processes.
-
Cost Management and Optimization Analysis: Utilize the plugin to automatically send cost-related metrics from various services into BigQuery. Analyzing this data can help businesses identify unnecessary expenses and optimize resource usage. By performing aggregation and transformation queries in BigQuery, organizations can create accurate forecasts and manage their cloud spending efficiently.
-
Cross-Team Collaboration on Monitoring Data: Enable different teams within an organization to share their monitoring data using BigQuery. With the help of this Telegraf plugin, teams can push their metrics to a central BigQuery instance, fostering collaboration. This data-sharing approach encourages best practices and cross-functional awareness, leading to collective improvements in system performance and reliability.
-
Historical Analysis for Capacity Planning: By using the BigQuery plugin, companies can collect and store historical metrics data essential for capacity planning. Analyzing trends over time can help anticipate system needs and scale infrastructure proactively. Organizations can create time-series analyses and identify patterns that inform their long-term strategic decisions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration