Azure Storage Queue and Graylog Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Azure Storage Queue and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers sizes of Azure Storage Queues, providing users with metrics that enhance observability and management of their storage resources.

The Graylog plugin allows you to send Telegraf metrics to a Graylog server, utilizing the GELF format for structured logging.

Integration details

Azure Storage Queue

The Azure Storage Queue plugin allows users to gather various metrics concerning the size and message age of Azure Storage Queues. This plugin connects to Azure Storage, requiring specific credentials and offers configurable options to enhance performance. By collecting metrics, users gain valuable insights into the performance of their storage queues, enabling them to monitor usage patterns, peak loads, and optimize storage management effectively. The integration with Azure’s storage infrastructure provides a straightforward way to monitor queue metrics, ensuring that users can react to changes promptly, maintaining the efficiency and reliability of their applications.

Graylog

The Graylog plugin is designed for sending metrics to a Graylog instance using the GELF (Graylog Extended Log Format) format. GELF helps standardize the logging data, making it easier for systems to send and analyze logs. The plugin adheres to the GELF specification, which lays out requirements for specific fields within the payload. Notably, the timestamp must be in UNIX format, and if present, the plugin sends the timestamp as-is to Graylog without alterations. If omitted, it automatically generates a timestamp. Additionally, any extra fields not explicitly defined by the spec will be prefixed with an underscore, helping to keep the data organized and compliant with GELF’s requirements. This capability is particularly valuable for users monitoring applications and infrastructure in real-time, as it allows for seamless integration and improved visibility across multiple systems.

Configuration

Azure Storage Queue

[[inputs.azure_storage_queue]]
  ## Required Azure Storage Account name
  account_name = "mystorageaccount"

  ## Required Azure Storage Account access key
  account_key = "storageaccountaccesskey"

  ## Set to false to disable peeking age of oldest message (executes faster)
  # peek_oldest_message_age = true

Graylog

[[outputs.graylog]]
  ## Endpoints for your graylog instances.
  servers = ["udp://127.0.0.1:12201"]

  ## Connection timeout.
  # timeout = "5s"

  ## The field to use as the GELF short_message, if unset the static string
  ## "telegraf" will be used.
  ##   example: short_message_field = "message"
  # short_message_field = ""

  ## According to GELF payload specification, additional fields names must be prefixed
  ## with an underscore. Previous versions did not prefix custom field 'name' with underscore.
  ## Set to true for backward compatibility.
  # name_field_no_prefix = false

  ## Connection retry options
  ## Attempt to connect to the endpoints if the initial connection fails.
  ## If 'false', Telegraf will give up after 3 connection attempt and will
  ## exit with an error. If set to 'true', the plugin will retry to connect
  ## to the unconnected endpoints infinitely.
  # connection_retry = false
  ## Time to wait between connection retry attempts.
  # connection_retry_wait_time = "15s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Input and output integration examples

Azure Storage Queue

  1. Monitoring Queue Performance in Real-time: Use the Azure Storage Queue plugin to continuously track the size and age of messages in queues, providing operators with real-time insights. This information can help teams understand throughput and delays, enabling them to adjust processing rates or troubleshoot bottlenecks.

  2. Dynamic Alerting Based on Queue Metrics: Integrate metrics from the Azure Storage Queue plugin into an alerting system. By defining thresholds for message age and queue size, organizations can automate notifications, ensuring they promptly address situations where queues become too long or messages are delayed, maintaining a healthy and responsive system environment.

  3. Optimizing Cost Management: Leverage the insights from the Azure Storage Queue metrics to identify periods of inactivity and implement cost-saving measures by adjusting storage scales. By analyzing queue size trends, organizations can make informed decisions about resource allocation, effectively balancing performance needs with cost efficiency.

  4. Enhancing Application Fault Tolerance: Use the age metrics of the oldest message to design smarter retry strategies within applications. In scenarios where message processing fails, understanding how long messages sit in the queue allows developers to fine-tune their error handling logic, enhancing the resilience and reliability of their applications.

Graylog

  1. Enhanced Log Management for Cloud Applications: Use the Graylog Telegraf plugin to aggregate logs from cloud-deployed applications across multiple servers. By integrating this plugin, teams can centralize logging data, making it easier to troubleshoot issues, monitor application performance, and maintain compliance with logging standards.

  2. Real-Time Security Monitoring: Leverage the Graylog plugin to collect and send security-related metrics and logs to a Graylog server for real-time analysis. This allows security teams to quickly identify anomalies, track potential breaches, and respond to incidents promptly by correlating logs from various sources within the infrastructure.

  3. Dynamic Alerting and Notification System: Implement the Graylog plugin to enhance alerting mechanisms in your infrastructure. By sending metrics to Graylog, teams can set up dynamic alerts based on log patterns or unexpected behavior, enabling proactive monitoring and rapid incident response strategies.

  4. Cross-Platform Log Consolidation: Use the Graylog plugin to facilitate cross-platform log consolidation across diverse environments such as on-premises, hybrid, and cloud. By standardizing logging in the GELF format, organizations can ensure consistent monitoring and troubleshooting practices, regardless of where their services are hosted.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration