Azure Storage Queue and OpenTSDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Azure Storage Queue and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers sizes of Azure Storage Queues, providing users with metrics that enhance observability and management of their storage resources.

The OpenTSDB plugin facilitates the integration of Telegraf with OpenTSDB, allowing users to push time-series metrics to an OpenTSDB backend seamlessly.

Integration details

Azure Storage Queue

The Azure Storage Queue plugin allows users to gather various metrics concerning the size and message age of Azure Storage Queues. This plugin connects to Azure Storage, requiring specific credentials and offers configurable options to enhance performance. By collecting metrics, users gain valuable insights into the performance of their storage queues, enabling them to monitor usage patterns, peak loads, and optimize storage management effectively. The integration with Azure’s storage infrastructure provides a straightforward way to monitor queue metrics, ensuring that users can react to changes promptly, maintaining the efficiency and reliability of their applications.

OpenTSDB

The OpenTSDB plugin is designed to send metrics to an OpenTSDB instance using either the telnet or HTTP mode. With the introduction of OpenTSDB 2.0, the recommended method for sending metrics is via the HTTP API, which allows for batch processing of metrics by configuring the ‘http_batch_size’. The plugin supports several configuration options including metrics prefixing, server host and port specification, URI path customization for reverse proxies, and debug options for diagnosing communication issues with OpenTSDB. This plugin is particularly useful in scenarios where time series data is generated and needs to be efficiently stored in a scalable time series database like OpenTSDB, making it suitable for a wide range of monitoring and analytics applications.

Configuration

Azure Storage Queue

[[inputs.azure_storage_queue]]
  ## Required Azure Storage Account name
  account_name = "mystorageaccount"

  ## Required Azure Storage Account access key
  account_key = "storageaccountaccesskey"

  ## Set to false to disable peeking age of oldest message (executes faster)
  # peek_oldest_message_age = true

OpenTSDB

[[outputs.opentsdb]]
  ## prefix for metrics keys
  prefix = "my.specific.prefix."

  ## DNS name of the OpenTSDB server
  ## Using "opentsdb.example.com" or "tcp://opentsdb.example.com" will use the
  ## telnet API. "http://opentsdb.example.com" will use the Http API.
  host = "opentsdb.example.com"

  ## Port of the OpenTSDB server
  port = 4242

  ## Number of data points to send to OpenTSDB in Http requests.
  ## Not used with telnet API.
  http_batch_size = 50

  ## URI Path for Http requests to OpenTSDB.
  ## Used in cases where OpenTSDB is located behind a reverse proxy.
  http_path = "/api/put"

  ## Debug true - Prints OpenTSDB communication
  debug = false

  ## Separator separates measurement name from field
  separator = "_"

Input and output integration examples

Azure Storage Queue

  1. Monitoring Queue Performance in Real-time: Use the Azure Storage Queue plugin to continuously track the size and age of messages in queues, providing operators with real-time insights. This information can help teams understand throughput and delays, enabling them to adjust processing rates or troubleshoot bottlenecks.

  2. Dynamic Alerting Based on Queue Metrics: Integrate metrics from the Azure Storage Queue plugin into an alerting system. By defining thresholds for message age and queue size, organizations can automate notifications, ensuring they promptly address situations where queues become too long or messages are delayed, maintaining a healthy and responsive system environment.

  3. Optimizing Cost Management: Leverage the insights from the Azure Storage Queue metrics to identify periods of inactivity and implement cost-saving measures by adjusting storage scales. By analyzing queue size trends, organizations can make informed decisions about resource allocation, effectively balancing performance needs with cost efficiency.

  4. Enhancing Application Fault Tolerance: Use the age metrics of the oldest message to design smarter retry strategies within applications. In scenarios where message processing fails, understanding how long messages sit in the queue allows developers to fine-tune their error handling logic, enhancing the resilience and reliability of their applications.

OpenTSDB

  1. Real-time Infrastructure Monitoring: Utilize the OpenTSDB plugin to collect and store metrics from various infrastructure components. By configuring the plugin to push metrics to OpenTSDB, organizations can have a centralized view of their infrastructure health and performance over time.

  2. Custom Application Metrics Tracking: Integrate the OpenTSDB plugin into custom applications to track key performance indicators (KPIs) such as response times, error rates, and user interactions. This setup allows developers and product teams to visualize application performance trends and make data-driven decisions.

  3. Automated Anomaly Detection: Leverage the plugin in conjunction with machine learning algorithms to automatically detect anomalies in time-series data sent to OpenTSDB. By continuously monitoring the incoming metrics, the system can train models that alert users to potential issues before they affect application performance.

  4. Historical Data Analysis: Use the OpenTSDB plugin to store and analyze historical performance data for capacity planning and trend analysis. This provides valuable insights into system behavior over time, helping teams to understand usage patterns and prepare for future growth.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration