Azure Storage Queue and ServiceNow Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers sizes of Azure Storage Queues, providing users with metrics that enhance observability and management of their storage resources.
This output plugin streams metrics from Telegraf directly to a ServiceNow MID Server via HTTP, leveraging the nowmetric
serializer for efficient integration with ServiceNow’s Operational Intelligence and Event Management.
Integration details
Azure Storage Queue
The Azure Storage Queue plugin allows users to gather various metrics concerning the size and message age of Azure Storage Queues. This plugin connects to Azure Storage, requiring specific credentials and offers configurable options to enhance performance. By collecting metrics, users gain valuable insights into the performance of their storage queues, enabling them to monitor usage patterns, peak loads, and optimize storage management effectively. The integration with Azure’s storage infrastructure provides a straightforward way to monitor queue metrics, ensuring that users can react to changes promptly, maintaining the efficiency and reliability of their applications.
ServiceNow
Telegraf can be used to send metric data directly to a ServiceNow MID Server REST endpoint. Metrics are formatted either using ServiceNow’s Operational Intelligence (OI) format or JSONv2 format, enabling seamless integration with ServiceNow’s Event Management and Operational Intelligence platforms. The serializer batches metrics efficiently, reducing network overhead by minimizing the number of HTTP POST requests. This integration allows users to quickly leverage metrics in ServiceNow for enhanced observability, proactive incident management, and performance monitoring, with ServiceNow’s operational intelligence capabilities.
Configuration
Azure Storage Queue
[[inputs.azure_storage_queue]]
## Required Azure Storage Account name
account_name = "mystorageaccount"
## Required Azure Storage Account access key
account_key = "storageaccountaccesskey"
## Set to false to disable peeking age of oldest message (executes faster)
# peek_oldest_message_age = true
ServiceNow
[[outputs.http]]
## ServiceNow MID Server metrics endpoint
url = "http://mid-server.example.com:9082/api/mid/sa/metrics"
## HTTP request method
method = "POST"
## Basic Authentication credentials
username = "evt.integration"
password = "P@$$w0rd!"
## Data serialization format for ServiceNow
data_format = "nowmetric"
## Metric format type: "oi" (default) or "jsonv2"
nowmetric_format = "oi"
## HTTP Headers
[outputs.http.headers]
Content-Type = "application/json"
Accept = "application/json"
## Optional timeout
# timeout = "5s"
## TLS configuration options
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
Input and output integration examples
Azure Storage Queue
-
Monitoring Queue Performance in Real-time: Use the Azure Storage Queue plugin to continuously track the size and age of messages in queues, providing operators with real-time insights. This information can help teams understand throughput and delays, enabling them to adjust processing rates or troubleshoot bottlenecks.
-
Dynamic Alerting Based on Queue Metrics: Integrate metrics from the Azure Storage Queue plugin into an alerting system. By defining thresholds for message age and queue size, organizations can automate notifications, ensuring they promptly address situations where queues become too long or messages are delayed, maintaining a healthy and responsive system environment.
-
Optimizing Cost Management: Leverage the insights from the Azure Storage Queue metrics to identify periods of inactivity and implement cost-saving measures by adjusting storage scales. By analyzing queue size trends, organizations can make informed decisions about resource allocation, effectively balancing performance needs with cost efficiency.
-
Enhancing Application Fault Tolerance: Use the age metrics of the oldest message to design smarter retry strategies within applications. In scenarios where message processing fails, understanding how long messages sit in the queue allows developers to fine-tune their error handling logic, enhancing the resilience and reliability of their applications.
ServiceNow
-
Proactive Incident Management: Utilize the Telegraf and ServiceNow integration to stream infrastructure and application metrics in real-time to ServiceNow Event Management. Automatically trigger incidents or remediation workflows based on thresholds, significantly reducing incident detection and response times.
-
End-to-End Application Monitoring: Deploy Telegraf agents across multiple layers of an application stack, sending performance metrics directly into ServiceNow. Leveraging ServiceNow’s Operational Intelligence, teams can correlate metrics across components, quickly identifying performance bottlenecks.
-
Dynamic CI Performance Tracking: Integrate Telegraf metrics with ServiceNow’s CMDB by using this plugin to push performance data, allowing automatic updates of Configuration Item (CI) health states based on live metrics. This ensures an accurate and current state of infrastructure health in ServiceNow.
-
Cloud Resource Optimization: Collect metrics from hybrid and multi-cloud infrastructures using Telegraf, streaming directly to ServiceNow. Leverage these metrics for real-time analytics, predictive capacity planning, and resource optimization, enabling proactive management and reduced operational costs.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration