Ceph and OpenObserve Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Ceph plugin for Telegraf helps in gathering performance metrics from both MON and OSD nodes in a Ceph storage cluster for effective monitoring and management.
This configuration pairs Telegraf’s HTTP output with OpenObserve’s native JSON ingestion API, turning any Telegraf agent into a first-class OpenObserve collector.
Integration details
Ceph
The Ceph Storage Telegraf plugin is designed to collect performance metrics from Monitor (MON) and Object Storage Daemon (OSD) nodes within a Ceph storage cluster. Ceph, a highly scalable storage system, integrates its metrics collection through this plugin, facilitating easy monitoring of its components. With the introduction of this plugin in the 13.x Mimic release, users can effectively gather detailed insights into the performance and health of their Ceph infrastructure. It functions by scanning configured socket directories for specific Ceph service socket files, executing commands via the Ceph administrative interface, and parsing the returned JSON data for metrics. The metrics are organized based on top-level keys, allowing for efficient monitoring and analysis of cluster performance. This plugin provides valuable capabilities for managing and maintaining the performance of a Ceph cluster by allowing administrators to understand system behavior and identify potential issues proactively.
OpenObserve
OpenObserve is an open source observability platform written in Rust that stores data cost-effectively on object storage or local disk. It exposes REST endpoints such as /api/{org}/ingest/metrics/_json
that accept batched metric documents conforming to a concise JSON schema, making it an attractive drop-in replacement for Loki or Elasticsearch stacks. The Telegraf HTTP output plugin streams metrics to arbitrary HTTP targets; when the "data_format = "json"" serializer is selected, Telegraf batches its metric objects into a payload that matches OpenObserve’s ingestion contract. The plugin supports configurable batch size, custom headers, TLS, and compression, allowing operators to authenticate with Basic or Bearer tokens and to enforce back-pressure without additional collectors. By reusing existing Telegraf agents already collecting system, application, or SNMP data, organizations can funnel rich telemetry into OpenObserve dashboards and SQL-like analytics with minimal overhead, enabling unified observability, long-term retention, and real-time alerting without vendor lock-in.
Configuration
Ceph
[[inputs.ceph]]
## This is the recommended interval to poll. Too frequent and you
## will lose data points due to timeouts during rebalancing and recovery
interval = '1m'
## All configuration values are optional, defaults are shown below
## location of ceph binary
ceph_binary = "/usr/bin/ceph"
## directory in which to look for socket files
socket_dir = "/var/run/ceph"
## prefix of MON and OSD socket files, used to determine socket type
mon_prefix = "ceph-mon"
osd_prefix = "ceph-osd"
mds_prefix = "ceph-mds"
rgw_prefix = "ceph-client"
## suffix used to identify socket files
socket_suffix = "asok"
## Ceph user to authenticate as, ceph will search for the corresponding
## keyring e.g. client.admin.keyring in /etc/ceph, or the explicit path
## defined in the client section of ceph.conf for example:
##
## [client.telegraf]
## keyring = /etc/ceph/client.telegraf.keyring
##
## Consult the ceph documentation for more detail on keyring generation.
ceph_user = "client.admin"
## Ceph configuration to use to locate the cluster
ceph_config = "/etc/ceph/ceph.conf"
## Whether to gather statistics via the admin socket
gather_admin_socket_stats = true
## Whether to gather statistics via ceph commands, requires ceph_user
## and ceph_config to be specified
gather_cluster_stats = false
OpenObserve
[[outputs.http]]
## OpenObserve JSON metrics ingestion endpoint
url = "https://api.openobserve.ai/api/default/ingest/metrics/_json"
## Use POST to push batches
method = "POST"
## Basic auth header (base64 encoded "username:password")
headers = { Authorization = "Basic dXNlcjpwYXNzd29yZA==" }
## Timeout for HTTP requests
timeout = "10s"
## Override Content-Type to match OpenObserve expectation
content_type = "application/json"
## Force Telegraf to batch and serialize metrics as JSON
data_format = "json"
## JSON serializer specific options
json_timestamp_units = "1ms"
## Uncomment to restrict batch size
# batch_size = 5000
Input and output integration examples
Ceph
-
Dynamic Monitoring Dashboard: Utilize the Ceph plugin to create a real-time monitoring dashboard that visually represents the performance metrics of your Ceph cluster. By integrating these metrics into a centralized dashboard, system administrators can gain immediate insights into the health of the storage infrastructure, which aids in quickly identifying and addressing potential issues before they escalate.
-
Automated Alerting System: Implement the Ceph plugin in conjunction with an alerting solution to automatically notify administrators of performance degradation or operational issues within the Ceph cluster. By defining thresholds for key metrics, organizations can ensure prompt response actions, thereby improving overall system reliability and performance.
-
Performance Benchmarking: Use the metrics collected by this plugin to conduct performance benchmarking tests across different configurations or hardware setups of your Ceph storage cluster. This process can assist organizations in identifying optimal configurations that enhance performance and resource utilization, promoting a more efficient storage environment.
-
Capacity Planning and Forecasting: Integrate the metrics gathered from the Ceph storage plugin into broader data analytics and reporting tools to facilitate capacity planning. By analyzing historical metrics, organizations can forecast future utilization trends, enabling informed decisions about scaling storage resources effectively.
OpenObserve
-
Edge Device Health Mirror: Deploy Telegraf on thousands of industrial IoT devices to capture temperature, vibration, and power metrics, then use this output to push JSON batches to OpenObserve. Plant operators gain a real-time overview of machine health and can trigger maintenance based on anomalies without relying on heavyweight collectors.
-
Blue-Green Deployment Canary: Attach a lightweight Telegraf sidecar to each Kubernetes release-candidate pod that scrapes /metrics and forwards container stats to a dedicated “canary” stream in OpenObserve. Continuous comparison of error rates between blue and green versions empowers the CI pipeline to auto-roll back poor performers within seconds.
-
Multi-Tenant SaaS Billing Pipeline: Emit per-customer usage counters via Telegraf and tag them with
tenant_id
; the HTTP plugin posts them to OpenObserve where SQL reports aggregate usage into invoices, eliminating separate metering services and simplifying compliance audits. -
Security Threat Scoring: Fuse Suricata events and host resource metrics in Telegraf, deliver them to OpenObserve’s analytics engine, and run stream-processing rules that correlate spikes in suspicious traffic with CPU saturation to produce an actionable threat score and automatically open tickets in a SOAR platform.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration