ctrlX Data Layer and Apache Inlong Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The ctrlX plugin is designed to gather data seamlessly from the ctrlX Data Layer middleware, widely used in industrial automation.
The Inlong plugin connects Telegraf to Apache InLong, enabling seamless transmission of collected metrics to an InLong instance.
Integration details
ctrlX Data Layer
The ctrlX Telegraf plugin provides a means to gather data from the ctrlX Data Layer, a communication middleware designed for professional automation applications. This plugin allows users to connect to ctrlX CORE devices, enabling the collection and monitoring of various metrics related to industrial and building automation, robotics, and IoT. The configuration options allow for detailed specifications of connection settings, subscription properties, and sampling rates, facilitating effective integration with the ctrlX Data Layer to meet customized monitoring needs, while leveraging the unique capabilities of the ctrlX platform.
Apache Inlong
This Inlong plugin is designed to publish metrics to an Apache InLong instance, which facilitates the management of data streams in a scalable manner. Apache InLong provides a robust framework for efficient data transmission between various components in a distributed environment. By leveraging this plugin, users can effectively route and transmit metrics collected by Telegraf to their InLong data-proxy infrastructure. As a key component in a data pipeline, the Inlong Output Plugin helps ensure that data is consistently formatted, streamed correctly, and managed in compliance with the standards set by Apache InLong, making it an essential tool for organizations looking to enhance their data analytics and reporting capabilities.
Configuration
ctrlX Data Layer
[[inputs.ctrlx_datalayer]]
## Hostname or IP address of the ctrlX CORE Data Layer server
## example: server = "localhost" # Telegraf is running directly on the device
## server = "192.168.1.1" # Connect to ctrlX CORE remote via IP
## server = "host.example.com" # Connect to ctrlX CORE remote via hostname
## server = "10.0.2.2:8443" # Connect to ctrlX CORE Virtual from development environment
server = "localhost"
## Authentication credentials
username = "boschrexroth"
password = "boschrexroth"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Timeout for HTTP requests. (default: "10s")
# timeout = "10s"
## Create a ctrlX Data Layer subscription.
## It is possible to define multiple subscriptions per host. Each subscription can have its own
## sampling properties and a list of nodes to subscribe to.
## All subscriptions share the same credentials.
[[inputs.ctrlx_datalayer.subscription]]
## The name of the measurement. (default: "ctrlx")
measurement = "memory"
## Configure the ctrlX Data Layer nodes which should be subscribed.
## address - node address in ctrlX Data Layer (mandatory)
## name - field name to use in the output (optional, default: base name of address)
## tags - extra node tags to be added to the output metric (optional)
## Note:
## Use either the inline notation or the bracketed notation, not both.
## The tags property is only supported in bracketed notation due to toml parser restrictions
## Examples:
## Inline notation
nodes=[
{name="available", address="framework/metrics/system/memavailable-mb"},
{name="used", address="framework/metrics/system/memused-mb"},
]
## Bracketed notation
# [[inputs.ctrlx_datalayer.subscription.nodes]]
# name ="available"
# address="framework/metrics/system/memavailable-mb"
# ## Define extra tags related to node to be added to the output metric (optional)
# [inputs.ctrlx_datalayer.subscription.nodes.tags]
# node_tag1="node_tag1"
# node_tag2="node_tag2"
# [[inputs.ctrlx_datalayer.subscription.nodes]]
# name ="used"
# address="framework/metrics/system/memused-mb"
## The switch "output_json_string" enables output of the measurement as json.
## That way it can be used in in a subsequent processor plugin, e.g. "Starlark Processor Plugin".
# output_json_string = false
## Define extra tags related to subscription to be added to the output metric (optional)
# [inputs.ctrlx_datalayer.subscription.tags]
# subscription_tag1 = "subscription_tag1"
# subscription_tag2 = "subscription_tag2"
## The interval in which messages shall be sent by the ctrlX Data Layer to this plugin. (default: 1s)
## Higher values reduce load on network by queuing samples on server side and sending as a single TCP packet.
# publish_interval = "1s"
## The interval a "keepalive" message is sent if no change of data occurs. (default: 60s)
## Only used internally to detect broken network connections.
# keep_alive_interval = "60s"
## The interval an "error" message is sent if an error was received from a node. (default: 10s)
## Higher values reduce load on output target and network in case of errors by limiting frequency of error messages.
# error_interval = "10s"
## The interval that defines the fastest rate at which the node values should be sampled and values captured. (default: 1s)
## The sampling frequency should be adjusted to the dynamics of the signal to be sampled.
## Higher sampling frequencies increases load on ctrlX Data Layer.
## The sampling frequency can be higher, than the publish interval. Captured samples are put in a queue and sent in publish interval.
## Note: The minimum sampling interval can be overruled by a global setting in the ctrlX Data Layer configuration ('datalayer/subscriptions/settings').
# sampling_interval = "1s"
## The requested size of the node value queue. (default: 10)
## Relevant if more values are captured than can be sent.
# queue_size = 10
## The behaviour of the queue if it is full. (default: "DiscardOldest")
## Possible values:
## - "DiscardOldest"
## The oldest value gets deleted from the queue when it is full.
## - "DiscardNewest"
## The newest value gets deleted from the queue when it is full.
# queue_behaviour = "DiscardOldest"
## The filter when a new value will be sampled. (default: 0.0)
## Calculation rule: If (abs(lastCapturedValue - newValue) > dead_band_value) capture(newValue).
# dead_band_value = 0.0
## The conditions on which a sample should be captured and thus will be sent as a message. (default: "StatusValue")
## Possible values:
## - "Status"
## Capture the value only, when the state of the node changes from or to error state. Value changes are ignored.
## - "StatusValue"
## Capture when the value changes or the node changes from or to error state.
## See also 'dead_band_value' for what is considered as a value change.
## - "StatusValueTimestamp":
## Capture even if the value is the same, but the timestamp of the value is newer.
## Note: This might lead to high load on the network because every sample will be sent as a message
## even if the value of the node did not change.
# value_change = "StatusValue"
Apache Inlong
[[outputs.inlong]]
## Manager URL to obtain the Inlong data-proxy IP list for sending the data
url = "http://127.0.0.1:8083"
## Unique identifier for the data-stream group
group_id = "telegraf"
## Unique identifier for the data stream within its group
stream_id = "telegraf"
## Data format to output.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
# data_format = "influx"
Input and output integration examples
ctrlX Data Layer
-
Industrial Automation Monitoring: Utilize this plugin to continuously monitor key performance indicators from a manufacturing system controlled by ctrlX CORE devices. By subscribing to specific data nodes that provide real-time metrics such as resource availability or machine uptime, manufacturers can dynamically adjust their operations for increased efficiency and minimal downtime.
-
Energy Consumption Analysis: Collect energy consumption data from IoT-enabled ctrlX CORE platforms in a smart building setup. By analyzing trends and patterns in energy use, facility managers can optimize operating strategies, reduce energy costs, and support sustainability initiatives, making informed decisions about resource allocation and predictive maintenance.
-
Predictive Maintenance for Robotics: Gather telemetry data from robotics applications deployed in warehousing environments. By monitoring vibration, temperature, and operational parameters in real-time, organizations can predict equipment failures before they occur, leading to reduced maintenance costs and enhanced robotic system uptime through timely interventions.
-
Cross-Platform Data Integration: Connect data gathered from ctrlX CORE devices into a centralized Cloud data warehouse using this plugin. By streaming real-time metrics to other systems, organizations can create a unified view of operational performance across various manufacturing and operational systems, enabling data-driven decision-making across diverse platforms.
Apache Inlong
-
Real-time Metrics Monitoring: Integrating the Inlong plugin with a real-time monitoring dashboard allows teams to visualize system performance continuously. As metrics flow from Telegraf to InLong, organizations can create dynamic panels in their monitoring tools, providing instant insights into system health, resource utilization, and performance bottlenecks. This setup encourages proactive management and swift identification of potential issues before they escalate into critical failures.
-
Centralized Data Processing: Use the Inlong plugin to send Telegraf metrics to a centralized data processing pipeline that processes large volumes of data for analysis. By directing all collected metrics through Apache InLong, businesses can streamline their data workflows and ensure consistency in data formatting and processing. This centralized approach facilitates easier data integration with business intelligence tools and enhances decision-making through consolidated data insights.
-
Integration with Machine Learning Models: By feeding metrics collected through the Inlong Output Plugin into machine learning models, teams can enhance predictive analytics capabilities. For instance, metrics can be analyzed to predict system failures or performance trends. This application allows organizations to leverage historical data and infer future performance, helping them optimize resource allocation and minimize downtime using automated alerts based on model predictions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration