ctrlX Data Layer and M3DB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The ctrlX plugin is designed to gather data seamlessly from the ctrlX Data Layer middleware, widely used in industrial automation.</p>
<p>This plugin allows Telegraf to stream metrics to M3DB using the Prometheus Remote Write protocol, enabling scalable ingestion through the M3 Coordinator.</p>
Integration details
ctrlX Data Layer
<p>The ctrlX Telegraf plugin provides a means to gather data from the ctrlX Data Layer, a communication middleware designed for professional automation applications. This plugin allows users to connect to ctrlX CORE devices, enabling the collection and monitoring of various metrics related to industrial and building automation, robotics, and IoT. The configuration options allow for detailed specifications of connection settings, subscription properties, and sampling rates, facilitating effective integration with the ctrlX Data Layer to meet customized monitoring needs, while leveraging the unique capabilities of the ctrlX platform.</p>
M3DB
<p>This configuration uses Telegraf’s HTTP output plugin with <code>prometheusremotewrite</code> format to send metrics directly to M3DB through the M3 Coordinator. M3DB is a distributed time series database designed for scalable, high-throughput metric storage. It supports ingestion of Prometheus remote write data via its Coordinator component, which manages translation and routing into the M3DB cluster. This approach enables organizations to collect metrics from systems that aren’t natively instrumented for Prometheus (e.g., Windows, SNMP, legacy systems) and ingest them efficiently into M3’s long-term, high-performance storage engine. The setup is ideal for high-scale observability stacks with Prometheus compatibility requirements.</p>
Configuration
ctrlX Data Layer
M3DB
Input and output integration examples
ctrlX Data Layer
<ol> <li> <p><strong>Industrial Automation Monitoring</strong>: Utilize this plugin to continuously monitor key performance indicators from a manufacturing system controlled by ctrlX CORE devices. By subscribing to specific data nodes that provide real-time metrics such as resource availability or machine uptime, manufacturers can dynamically adjust their operations for increased efficiency and minimal downtime.</p> </li> <li> <p><strong>Energy Consumption Analysis</strong>: Collect energy consumption data from IoT-enabled ctrlX CORE platforms in a smart building setup. By analyzing trends and patterns in energy use, facility managers can optimize operating strategies, reduce energy costs, and support sustainability initiatives, making informed decisions about resource allocation and predictive maintenance.</p> </li> <li> <p><strong>Predictive Maintenance for Robotics</strong>: Gather telemetry data from robotics applications deployed in warehousing environments. By monitoring vibration, temperature, and operational parameters in real-time, organizations can predict equipment failures before they occur, leading to reduced maintenance costs and enhanced robotic system uptime through timely interventions.</p> </li> <li> <p><strong>Cross-Platform Data Integration</strong>: Connect data gathered from ctrlX CORE devices into a centralized Cloud data warehouse using this plugin. By streaming real-time metrics to other systems, organizations can create a unified view of operational performance across various manufacturing and operational systems, enabling data-driven decision-making across diverse platforms.</p> </li> </ol>
M3DB
<ol> <li> <p><strong>Large-Scale Cloud Infrastructure Monitoring</strong>: Deploy Telegraf agents across thousands of virtual machines and containers to collect metrics and stream them into M3DB through the M3 Coordinator. This provides reliable, long-term visibility with minimal storage overhead and high availability.</p> </li> <li> <p><strong>Legacy System Metrics Ingestion</strong>: Use Telegraf to gather metrics from older systems that lack native Prometheus exporters (e.g., Windows servers, SNMP devices) and forward them to M3DB via remote write. This bridges modern observability workflows with legacy infrastructure.</p> </li> <li> <p><strong>Centralized App Telemetry Aggregation</strong>: Collect application-specific telemetry using Telegraf’s plugin ecosystem (e.g., <code>exec</code>, <code>http</code>, <code>jolokia</code>) and push it into M3DB for centralized storage and query via PromQL. This enables unified analytics across diverse data sources.</p> </li> <li> <p><strong>Hybrid Cloud Observability</strong>: Install Telegraf agents on-prem and in the cloud to collect and remote-write metrics into a centralized M3DB cluster. This ensures consistent visibility across environments while avoiding the complexity of running Prometheus federation layers.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration