DNS and Databricks Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider DNS and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The DNS plugin enables users to monitor and gather statistics on DNS query times, facilitating performance analysis of DNS resolutions.

Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.

Integration details

DNS

This plugin gathers DNS query times in milliseconds, utilizing the capabilities of DNS queries similar to the Dig command. It provides a means to monitor and analyze DNS performance by measuring the response time from specified DNS servers, allowing network administrators and engineers to ensure optimal DNS resolution times. The plugin can be configured to target specific servers and customize the types of records queried, encompassing various DNS features such as resolving domain names to IP addresses, or retrieving details from specific records as needed, while also clearly reporting on the success or failure of each query, alongside relevant metadata.

Databricks

This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a statement field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a PUT ... INTO /Volumes/... command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the warehouse_id at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and COPY INTO are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.

Configuration

DNS

[[inputs.dns_query]]
  servers = ["8.8.8.8"]

  # network = "udp"

  # domains = ["."]

  # record_type = "A"

  # port = 53

  # timeout = "2s"

  # include_fields = []
  

Databricks

[[outputs.http]]
  ## Databricks SQL Statement Execution API endpoint
  url = "https://{{ env "DATABRICKS_HOST" }}/api/2.0/sql/statements"

  ## Use POST to submit each Telegraf batch as a SQL request
  method = "POST"

  ## Personal-access token (PAT) for workspace or service principal
  headers = { Authorization = "Bearer {{ env "DATABRICKS_TOKEN" }}" }

  ## Send JSON that wraps the metrics batch in a SQL INSERT (or PUT into a Volume)
  content_type = "application/json"

  ## Serialize metrics as JSON so they can be embedded in the SQL statement
  data_format = "json"
  json_timestamp_units = "1ms"

  ## Build the request body.  Telegraf replaces the template variables at runtime.
  ## Example inserts a row per metric into a Unity-Catalog table.
  body_template = """
  {
    \"statement\": \"INSERT INTO ${TARGET_TABLE} VALUES {{range .Metrics}}(from_unixtime({{.timestamp}}/1000), {{.fields.usage}}, '{{.tags.host}}'){{end}}\",
    \"warehouse_id\": \"${WAREHOUSE_ID}\"
  }
  """

  ## Optional: add batching limits or TLS settings
  # batch_size = 500
  # timeout     = "10s"

Input and output integration examples

DNS

  1. Monitor DNS Performance for Multiple Servers: By deploying the DNS plugin, a user can simultaneously monitor the performance of different DNS servers, such as Google DNS and Cloudflare DNS, by specifying them in the servers array. This scenario enables comparisons of response times and reliability across different DNS providers, assisting in selecting the best option based on empirical data.

  2. Analyze Query Times for High-Traffic Domains: Integrate the plugin to measure response times specifically for high-traffic domains relevant to an organization’s operations, such as internal services or customer-facing sites. By focusing on performance metrics for these domains, organizations can proactively address latency issues, ensuring service reliability and improving user experiences.

  3. Alerting on DNS Timeouts: Utilize the plugin in combination with alerting systems to notify administrators whenever a DNS query exceeds a defined timeout threshold. This setup can help in proactive troubleshooting of networking issues or server misconfigurations, fostering a rapid response to potential downtime scenarios.

  4. Gather Historical Data for Performance Trends: Use the plugin to collect historical data on DNS query times over extended periods. This data can be used to analyze trends and patterns in DNS performance, enabling better capacity planning, identifying periodic issues, and justifying infrastructure upgrades or changes to DNS architectures.

Databricks

  1. Edge-to-Lakehouse Telemetry Pipe: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.
  2. Blue-Green CI/CD Rollout Metrics: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by deployment_id, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions.
  3. SaaS Usage Metering: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.
  4. Security Forensics Lake: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using PUT commands, then run COPY INTO for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration