Fireboard and AWS Redshift Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Fireboard plugin enables users to gather real-time temperature readings from Fireboard thermometers using the Fireboard REST API.
This plugin enables Telegraf to send metrics to Amazon Redshift using the PostgreSQL plugin, allowing metrics to be stored in a scalable, SQL-compatible data warehouse.
Integration details
Fireboard
This plugin gathers real-time temperature data from Fireboard thermometers. Fireboard is a smart thermometer system that utilizes a REST API to provide user access to temperature monitoring. This plugin allows users to retrieve temperature readings efficiently, utilizing the provided authentication token. It can be configured with an optional server URL and custom HTTP timeout settings, providing flexibility depending on the user’s network conditions or potential changes to the Fireboard API. The metrics captured are essential for monitoring environments that require precise temperature control, thereby aiding in applications such as cooking, brewing, or any scenario where temperature variations are critical.
AWS Redshift
This configuration uses the Telegraf PostgreSQL plugin to send metrics to Amazon Redshift, AWS’s fully managed cloud data warehouse that supports SQL-based analytics at scale. Although Redshift is based on PostgreSQL 8.0.2, it does not support all standard PostgreSQL features such as full JSONB, stored procedures, or upserts. Therefore, care must be taken to predefine compatible tables and schema when using Telegraf for Redshift integration. This setup is ideal for use cases that benefit from long-term, high-volume metric storage and integration with AWS analytics tools like QuickSight or Redshift Spectrum. Metrics stored in Redshift can be joined with business datasets for rich observability and BI analysis.
Configuration
Fireboard
[[inputs.fireboard]]
## Specify auth token for your account
auth_token = "invalidAuthToken"
## You can override the fireboard server URL if necessary
# url = https://fireboard.io/api/v1/devices.json
## You can set a different http_timeout if you need to
## You should set a string using an number and time indicator
## for example "12s" for 12 seconds.
# http_timeout = "4s"
AWS Redshift
[[outputs.postgresql]]
## Redshift connection settings
host = "redshift-cluster.example.us-west-2.redshift.amazonaws.com"
port = 5439
user = "telegraf"
password = "YourRedshiftPassword"
database = "metrics"
sslmode = "require"
## Optional: specify a dynamic table template for inserting metrics
table_template = "telegraf_metrics"
## Note: Redshift does not support all PostgreSQL features; ensure your table exists and is compatible
Input and output integration examples
Fireboard
-
Smart Cooking Assistant: Integrate the Fireboard plugin into a smart kitchen ecosystem to monitor and adjust cooking temperatures in real-time. This setup can leverage the temperature data to automate processes like turning on or off heating elements based on the current cooking stage, ensuring optimal results.
-
Remote Brewing Monitoring: Use this plugin as part of a remote brewing setup for beer production. Brewers can monitor temperatures from multiple fireboards placed in different tanks and receive alerts when temperatures deviate from desired ranges, allowing for timely interventions.
-
Environmental Monitoring System: Incorporate this plugin into a broader environmental monitoring system that tracks temperature changes in various settings, from server rooms to greenhouses. This data can help maintain optimal conditions and can even be tied to automated cooling or heating systems for efficient climate control.
-
Automated Alerting for Temperature Sensitive Products: Employ the Fireboard plugin to monitor temperatures of products requiring specific storage conditions, such as pharmaceuticals or perishables. When temperature thresholds are breached, automated alerts could be sent to management systems to initiate corrective actions, thereby preventing spoilage.
AWS Redshift
-
Business-Aware Infrastructure Monitoring: Store infrastructure metrics from Telegraf in Redshift alongside sales, marketing, or customer engagement data. Analysts can correlate system performance with business KPIs using SQL joins and window functions.
-
Historical Trend Analysis for Cloud Resources: Use Telegraf to continuously log CPU, memory, and I/O metrics to Redshift. Combine with time-series SQL queries and visualization tools like Amazon QuickSight to spot trends and forecast resource demand.
-
Security Auditing of System Behavior: Send metrics related to system logins, file changes, or resource spikes into Redshift. Analysts can build dashboards or reports for compliance auditing using SQL queries across multi-year data sets.
-
Cross-Environment SLA Reporting: Aggregate SLA metrics from multiple cloud accounts and regions using Telegraf, and push them to a central Redshift warehouse. Enable unified SLA compliance dashboards and executive reporting via a single SQL interface.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration