Fireboard and OSI PI Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Fireboard plugin enables users to gather real-time temperature readings from Fireboard thermometers using the Fireboard REST API.
This setup converts Telegraf into a lightweight PI Web API publisher, letting you push any Telegraf metric into the OSI PI System with a simple HTTP POST.
Integration details
Fireboard
This plugin gathers real-time temperature data from Fireboard thermometers. Fireboard is a smart thermometer system that utilizes a REST API to provide user access to temperature monitoring. This plugin allows users to retrieve temperature readings efficiently, utilizing the provided authentication token. It can be configured with an optional server URL and custom HTTP timeout settings, providing flexibility depending on the user’s network conditions or potential changes to the Fireboard API. The metrics captured are essential for monitoring environments that require precise temperature control, thereby aiding in applications such as cooking, brewing, or any scenario where temperature variations are critical.
OSI PI
OSI PI is an data management and analytics platform used in energy, manufacturing, and critical infrastructure. The PI Web API is its REST interface, exposing endpoints such as /piwebapi/streams/{WebId}/value that accept JSON payloads containing a Timestamp
and Value
. By pairing Telegraf’s flexible HTTP output with this endpoint, any metric Telegraf collects—SNMP counters, Modbus readings, Kubernetes stats—can be written directly into PI without installing proprietary interfaces. The configuration above authenticates with Basic or Kerberos, serializes each batch to JSON, and renders a minimal body template that aligns with PI Web API’s single-value write contract. Because Telegraf already supports batching, TLS, proxies, and custom headers, this approach scales from edge gateways to cloud VMs, allowing organizations to back-fill historical data, stream live telemetry, or mirror non-PI sources (e.g., Prometheus) into the PI data archive. It also sidesteps older SDK dependencies and enables hybrid architectures where PI remains on-prem while Telegraf agents run in containers or IIoT devices.
Configuration
Fireboard
[[inputs.fireboard]]
## Specify auth token for your account
auth_token = "invalidAuthToken"
## You can override the fireboard server URL if necessary
# url = https://fireboard.io/api/v1/devices.json
## You can set a different http_timeout if you need to
## You should set a string using an number and time indicator
## for example "12s" for 12 seconds.
# http_timeout = "4s"
OSI PI
[[outputs.http]]
## PI Web API endpoint for writing a single value to a PI Point by Web ID
url = "https://${PI_HOST}/piwebapi/streams/${WEB_ID}/value"
## Use POST for each batch
method = "POST"
content_type = "application/json"
## Basic-auth header (base64-encoded "DOMAIN\\user:password")
headers = { Authorization = "Basic ${BASIC_AUTH}" }
## Serialize Telegraf metrics as JSON
data_format = "json"
json_timestamp_units = "1ms"
## Render the JSON body that PI Web API expects
body_template = """
{{ range .Metrics -}}
{ "Timestamp": "{{ .timestamp | formatDate \"2006-01-02T15:04:05Z07:00\" }}", "Value": {{ index .fields 0 }} }
{{ end -}}
"""
## Tune networking / batching if needed
# timeout = "10s"
# batch_size = 1
Input and output integration examples
Fireboard
-
Smart Cooking Assistant: Integrate the Fireboard plugin into a smart kitchen ecosystem to monitor and adjust cooking temperatures in real-time. This setup can leverage the temperature data to automate processes like turning on or off heating elements based on the current cooking stage, ensuring optimal results.
-
Remote Brewing Monitoring: Use this plugin as part of a remote brewing setup for beer production. Brewers can monitor temperatures from multiple fireboards placed in different tanks and receive alerts when temperatures deviate from desired ranges, allowing for timely interventions.
-
Environmental Monitoring System: Incorporate this plugin into a broader environmental monitoring system that tracks temperature changes in various settings, from server rooms to greenhouses. This data can help maintain optimal conditions and can even be tied to automated cooling or heating systems for efficient climate control.
-
Automated Alerting for Temperature Sensitive Products: Employ the Fireboard plugin to monitor temperatures of products requiring specific storage conditions, such as pharmaceuticals or perishables. When temperature thresholds are breached, automated alerts could be sent to management systems to initiate corrective actions, thereby preventing spoilage.
OSI PI
-
Remote Pump Stations Telemetry Bridge: Install Telegraf on edge gateways at oil-field pump stations, gather flow-meter and vibration readings over Modbus, and POST them to the PI Web API. Operations teams view real-time data in PI Vision without deploying heavyweight PI interfaces, while bandwidth-friendly batching keeps satellite links economical.
-
Green-Energy Micro-Grid Dashboard: Export inverter, battery, and weather metrics from MQTT into Telegraf, which relays them to PI. PI AF analytics can calculate real-time power balance and feed a campus dashboard; historical deltas inform sustainability reports.
-
Brownfield SCADA Modernization: Legacy PLCs logged to CSV are ingested by Telegraf’s
tail
input; each row is parsed and immediately sent to PI via HTTP, creating a live data stream that co-exists with archival files while the SCADA upgrade proceeds incrementally. -
Synthetic Data Generator for Training: Telegraf’s
exec
input can run a script that emits simulated sensor patterns. Posting those metrics to a non-production PI server through the Web API supplies realistic datasets for PI Vision training sessions without risking production tags.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration