Google Cloud PubSub and Parquet Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin ingests metrics from Google Cloud PubSub, allowing for real-time data processing and integration into monitoring setups.
This plugin writes metrics to parquet files, utilizing a schema based on the metrics grouped by name. It supports file rotation and buffered writing for optimal performance.
Integration details
Google Cloud PubSub
The Google Cloud PubSub input plugin is designed to ingest metrics from Google Cloud PubSub, a messaging service that facilitates real-time communication between different systems. It allows users to create and process metrics by pulling messages from a specified subscription in a Google Cloud Project. One of the critical features of this plugin is its ability to operate as a service input, actively listening for incoming messages rather than merely polling for metrics at set intervals. Through various configuration options, users can customize the behavior of message ingestion, such as handling credentials, managing message sizes, and tuning the acknowledgment settings to ensure that messages are only acknowledged after successful processing. By leveraging the strengths of Google PubSub, this plugin integrates seamlessly with cloud-native architectures, enabling users to build robust and scalable applications that can react to events in real-time.
Parquet
The Parquet output plugin for Telegraf writes metrics to parquet files, which are columnar storage formats optimized for analytics. By default, this plugin groups metrics by their name, writing them to a single file. If a metric’s schema does not align with existing schemas, those metrics are dropped. The plugin generates an Apache Arrow schema based on all grouped metrics, ensuring that the schema reflects the union of all fields and tags. It operates in a buffered manner, meaning it temporarily holds metrics in memory before writing them to disk for efficiency. Parquet files require proper closure to ensure readability, and this is crucial when using the plugin, as improper closure can lead to unreadable files. Additionally, the plugin supports file rotation after specific time intervals, preventing overwrites of existing files and schema conflicts when a file with the same name already exists.
Configuration
Google Cloud PubSub
[[inputs.cloud_pubsub]]
project = "my-project"
subscription = "my-subscription"
data_format = "influx"
# credentials_file = "path/to/my/creds.json"
# retry_delay_seconds = 5
# max_message_len = 1000000
# max_undelivered_messages = 1000
# max_extension = 0
# max_outstanding_messages = 0
# max_outstanding_bytes = 0
# max_receiver_go_routines = 0
# base64_data = false
# content_encoding = "identity"
# max_decompression_size = "500MB"
Parquet
[[outputs.parquet]]
## Directory to write parquet files in. If a file already exists the output
## will attempt to continue using the existing file.
# directory = "."
## Files are rotated after the time interval specified. When set to 0 no time
## based rotation is performed.
# rotation_interval = "0h"
## Timestamp field name
## Field name to use to store the timestamp. If set to an empty string, then
## the timestamp is omitted.
# timestamp_field_name = "timestamp"
Input and output integration examples
Google Cloud PubSub
-
Real-Time Analytics for IoT Devices: Utilize the Google Cloud PubSub plugin to aggregate metrics from IoT devices scattered across various locations. By streaming data from devices to Google PubSub and using this plugin to ingest metrics, organizations can create a centralized dashboard for real-time monitoring and alerting. This setup allows for immediate insights into device performance, facilitating proactive maintenance and operational efficiency.
-
Dynamic Log Processing and Monitoring: Ingest logs from numerous sources via Google Cloud PubSub into a Telegraf pipeline, utilizing the plugin to parse and analyze log messages. This can help teams quickly identify anomalies or patterns in logs and streamline the process of troubleshooting issues across distributed systems. By consolidating log data, organizations can enhance their observability and response capabilities.
-
Event-Driven Workflow Integrations: Use the Google Cloud PubSub plugin to connect various cloud functions or services. Each time a new message is pushed to a subscription, actions can be triggered in other parts of the cloud architecture, such as starting data processing jobs, notifications, or even updates to reports. This event-driven approach allows for a more reactive system architecture that can adapt to changing business needs.
Parquet
-
Data Lake Ingestion: Utilize the Parquet plugin to store metrics from various sources into a data lake. By writing metrics in parquet format, you establish a standardized and efficient way to manage time-series data, enabling faster querying capabilities and seamless integration with analytics tools like Apache Spark or AWS Athena. This setup can significantly improve data retrieval times and analysis workflows.
-
Long-term Storage of Metrics: Implement the Parquet plugin in a monitoring setup where metrics are collected over time from multiple applications. This allows for long-term storage of performance data in a compact format, making it cost-effective to store vast amounts of historical data while preserving the ability for quick retrieval and analysis later on. By archiving metrics in parquet files, organizations can maintain compliance and create detailed reports from historical performance trends.
-
Analytics and Reporting: After writing metrics to parquet files, leverage tools like Apache Arrow or PyArrow to perform complex analytical queries directly on the files without needing to load all the data into memory. This can enhance reporting capabilities, allowing teams to generate insights and visualization from large datasets efficiently, thereby improving decision-making processes based on accurate, up-to-date performance metrics.
-
Integrating with Data Warehouses: Use the Parquet plugin as part of a data integration pipeline that feeds into a modern data warehouse. By converting metrics to parquet format, the data can be easily ingested by systems like Snowflake or Google BigQuery, enabling powerful analytics and business intelligence capabilities that drive actionable insights from the collected metrics.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration