HAProxy and Databricks Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider HAproxy and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers and reports statistics from HAProxy, a popular open-source load balancer and proxy server, to help in monitoring and optimizing its performance.

Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.

Integration details

HAProxy

The HAProxy plugin for Telegraf enables users to gather statistics directly from a HAProxy server via its stats socket or HTTP statistics page. HAProxy is a widely employed software load balancer and proxy server that provides high availability and performance for TCP and HTTP applications. By integrating with HAProxy, this plugin allows users to monitor and analyze various performance metrics such as active server counts, request rates, response codes, and session statuses in real-time, facilitating better decision-making and proactive management of network resources. Key features include support for both HTTP and socket-based metrics collection, compatibility with basic authentication for secure access, and configurable options for metric field naming, allowing for customization tailored to user preferences.

Databricks

This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a statement field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a PUT ... INTO /Volumes/... command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the warehouse_id at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and COPY INTO are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.

Configuration

HAProxy

[[inputs.haproxy]]
  ## List of stats endpoints. Metrics can be collected from both http and socket
  ## endpoints. Examples of valid endpoints:
  ##   - http://myhaproxy.com:1936/haproxy?stats
  ##   - https://myhaproxy.com:8000/stats
  ##   - socket:/run/haproxy/admin.sock
  ##   - /run/haproxy/*.sock
  ##   - tcp://127.0.0.1:1936
  ##
  ## Server addresses not starting with 'http://', 'https://', 'tcp://' will be
  ## treated as possible sockets. When specifying local socket, glob patterns are
  ## supported.
  servers = ["http://myhaproxy.com:1936/haproxy?stats"]

  ## By default, some of the fields are renamed from what haproxy calls them.
  ## Setting this option to true results in the plugin keeping the original
  ## field names.
  # keep_field_names = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Databricks

[[outputs.http]]
  ## Databricks SQL Statement Execution API endpoint
  url = "https://{{ env "DATABRICKS_HOST" }}/api/2.0/sql/statements"

  ## Use POST to submit each Telegraf batch as a SQL request
  method = "POST"

  ## Personal-access token (PAT) for workspace or service principal
  headers = { Authorization = "Bearer {{ env "DATABRICKS_TOKEN" }}" }

  ## Send JSON that wraps the metrics batch in a SQL INSERT (or PUT into a Volume)
  content_type = "application/json"

  ## Serialize metrics as JSON so they can be embedded in the SQL statement
  data_format = "json"
  json_timestamp_units = "1ms"

  ## Build the request body.  Telegraf replaces the template variables at runtime.
  ## Example inserts a row per metric into a Unity-Catalog table.
  body_template = """
  {
    \"statement\": \"INSERT INTO ${TARGET_TABLE} VALUES {{range .Metrics}}(from_unixtime({{.timestamp}}/1000), {{.fields.usage}}, '{{.tags.host}}'){{end}}\",
    \"warehouse_id\": \"${WAREHOUSE_ID}\"
  }
  """

  ## Optional: add batching limits or TLS settings
  # batch_size = 500
  # timeout     = "10s"

Input and output integration examples

HAProxy

  1. Dynamic Load Adjustment: Utilize the HAProxy plugin to monitor traffic patterns in real time, enabling automated adjustments to load balancing algorithms. By continuously gathering metrics on server loads and request rates, system administrators can dynamically allocate resources, ensuring that no single server becomes a bottleneck, thus enhancing overall application performance and availability.

  2. Historical Performance Analytics: Integrate this plugin with a time series database to collect HAProxy metrics over time, allowing you to analyze historical performance and traffic trends. This can facilitate predictive analysis and planning for capacity, giving businesses insights into peak traffic times and helping to identify potential future resource needs.

  3. Alerting on Anomalies: Implement alerting workflows that trigger when unusual patterns are detected in HAProxy metrics, such as sudden spikes in error rates or drops in request handling capacity. By leveraging this plugin, operations teams can receive timely notifications, allowing for swift intervention and minimizing the impact of potential downtime on end-users.

Databricks

  1. Edge-to-Lakehouse Telemetry Pipe: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.
  2. Blue-Green CI/CD Rollout Metrics: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by deployment_id, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions.
  3. SaaS Usage Metering: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.
  4. Security Forensics Lake: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using PUT commands, then run COPY INTO for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration