HTTP and DuckDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider HTTP and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The HTTP plugin allows for the collection of metrics from specified HTTP endpoints, handling various data formats and authentication methods.

This plugin enables Telegraf to write structured metrics into DuckDB using SQLite-compatible SQL connections, supporting lightweight local analytics and offline metric analysis.

Integration details

HTTP

The HTTP plugin collects metrics from one or more HTTP(S) endpoints, which should have metrics formatted in one of the supported input data formats. It also supports secrets from secret-stores for various authentication options and includes globally supported configuration settings.

DuckDB

Use the Telegraf SQL plugin to write metrics into a local DuckDB database. DuckDB is an in-process OLAP database designed for efficient analytical queries on columnar data. Although it does not provide a traditional client-server interface, DuckDB can be accessed via SQLite-compatible drivers in embedded mode. This allows Telegraf to store time series metrics in DuckDB using SQL, enabling powerful analytics workflows using familiar SQL syntax, Jupyter notebooks, or integration with data science tools like Python and R. DuckDB’s columnar storage and vectorized execution make it ideal for compact and high-performance metric archives.

Configuration

HTTP

[[inputs.http]]
  ## One or more URLs from which to read formatted metrics.
  urls = [
    "http://localhost/metrics",
    "http+unix:///run/user/420/podman/podman.sock:/d/v4.0.0/libpod/pods/json"
  ]

  ## HTTP method
  # method = "GET"

  ## Optional HTTP headers
  # headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP entity-body to send with POST/PUT requests.
  # body = ""

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "identity"

  ## Optional Bearer token settings to use for the API calls.
  ## Use either the token itself or the token file if you need a token.
  # token = "eyJhbGc...Qssw5c"
  # token_file = "/path/to/file"

  ## Optional HTTP Basic Auth Credentials
  # username = "username"
  # password = "pa$$word"

  ## OAuth2 Client Credentials. The options 'client_id', 'client_secret', and 'token_url' are required to use OAuth2.
  # client_id = "clientid"
  # client_secret = "secret"
  # token_url = "https://indentityprovider/oauth2/v1/token"
  # scopes = ["urn:opc:idm:__myscopes__"]

  ## HTTP Proxy support
  # use_system_proxy = false
  # http_proxy_url = ""

  ## Optional TLS Config
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Password for the key file if it is encrypted
  # tls_key_pwd = ""
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## List of ciphers to accept, by default all secure ciphers will be accepted
  ## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
  ## Use "all", "secure" and "insecure" to add all support ciphers, secure
  ## suites or insecure suites respectively.
  # tls_cipher_suites = ["secure"]
  ## Renegotiation method, "never", "once" or "freely"
  # tls_renegotiation_method = "never"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional Cookie authentication
  # cookie_auth_url = "https://localhost/authMe"
  # cookie_auth_method = "POST"
  # cookie_auth_username = "username"
  # cookie_auth_password = "pa$$word"
  # cookie_auth_headers = { Content-Type = "application/json", X-MY-HEADER = "hello" }
  # cookie_auth_body = '{"username": "user", "password": "pa$$word", "authenticate": "me"}'
  ## cookie_auth_renewal not set or set to "0" will auth once and never renew the cookie
  # cookie_auth_renewal = "5m"

  ## Amount of time allowed to complete the HTTP request
  # timeout = "5s"

  ## List of success status codes
  # success_status_codes = [200]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  # data_format = "influx"

DuckDB

[[outputs.sql]]
  ## Use the SQLite driver to connect to DuckDB via Go's database/sql
  driver = "sqlite3"

  ## DSN should point to the DuckDB database file
  dsn = "file:/var/lib/telegraf/metrics.duckdb"

  ## SQL INSERT statement with placeholders for metrics
  table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"

  ## Optional: manage connection pooling
  # max_open_connections = 1
  # max_idle_connections = 1
  # conn_max_lifetime = "0s"

  ## DuckDB does not require TLS or authentication by default

Input and output integration examples

HTTP

  1. Collecting Metrics from Localhost: The plugin can fetch metrics from an HTTP endpoint like http://localhost/metrics, allowing for easy local monitoring.
  2. Using Unix Domain Sockets: You can specify metrics collection from services over Unix domain sockets by using the http+unix scheme, for example, http+unix:///path/to/service.sock:/api/endpoint.

DuckDB

  1. Embedded Metric Warehousing for Notebooks: Write metrics to a local DuckDB file from Telegraf and analyze them in Jupyter notebooks using Python or R. This workflow supports reproducible analytics, ideal for data science experiments or offline troubleshooting.

  2. Batch Time-Series Processing on the Edge: Use Telegraf with DuckDB on edge devices to log metrics locally in SQL format. The compact storage and fast analytical capabilities of DuckDB make it ideal for batch processing and low-bandwidth environments.

  3. Exploratory Querying of Historical Metrics: Accumulate system metrics over time in DuckDB and perform exploratory data analysis (EDA) using SQL joins, window functions, and aggregates. This enables insights that go beyond what typical time-series dashboards provide.

  4. Self-Contained Metric Snapshots: Use DuckDB as a portable metrics archive by shipping .duckdb files between systems. Telegraf can collect and store data in this format, and analysts can later load and query it using the DuckDB CLI or integrations with tools like Tableau and Apache Arrow.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration