Icinga and Cortex Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers services & hosts status using Icinga2 Remote API, providing an interface to monitor your infrastructure effectively.
This plugin enables Telegraf to send metrics to Cortex using the Prometheus remote write protocol, allowing seamless ingestion into Cortex’s scalable, multi-tenant time series storage.
Integration details
Icinga
The Icinga2 Plugin enables users to gather status information from Icinga2’s Remote API. Icinga2 is a powerful monitoring system that checks the health of hosts and services and provides detailed monitoring capabilities. The plugin facilitates retrieving metrics such as the state of hosts and services, as well as detailed API status metrics. This integration is vital for users looking to keep an eye on their infrastructure’s health and performance metrics automatically, leveraging the Icinga2’s extensive API. By utilizing this plugin, users can easily integrate Icinga2 monitoring data with other systems, providing a comprehensive view of their infrastructure status.
Cortex
With Telegraf’s HTTP output plugin and the prometheusremotewrite
data format you can send metrics directly to Cortex, a horizontally scalable, long-term storage backend for Prometheus. Cortex supports multi-tenancy and accepts remote write requests using the Prometheus protobuf format. By using Telegraf as the collection agent and Remote Write as the transport mechanism, organizations can extend observability into sources not natively supported by Prometheus—such as Windows hosts, SNMP-enabled devices, or custom application metrics—while leveraging Cortex’s high-availability and long-retention capabilities.
Configuration
Icinga
[[inputs.icinga2]]
## Required Icinga2 server address
# server = "https://localhost:5665"
## Collected Icinga2 objects ("services", "hosts")
## Specify at least one object to collect from /v1/objects endpoint.
# objects = ["services"]
## Collect metrics from /v1/status endpoint
## Choose from:
## "ApiListener", "CIB", "IdoMysqlConnection", "IdoPgsqlConnection"
# status = []
## Credentials for basic HTTP authentication
# username = "admin"
# password = "admin"
## Maximum time to receive response.
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = true
Cortex
[[outputs.http]]
## Cortex Remote Write endpoint
url = "http://cortex.example.com/api/v1/push"
## Use POST to send data
method = "POST"
## Send metrics using Prometheus remote write format
data_format = "prometheusremotewrite"
## Optional HTTP headers for authentication
# [outputs.http.headers]
# X-Scope-OrgID = "your-tenant-id"
# Authorization = "Bearer YOUR_API_TOKEN"
## Optional TLS configuration
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
## Request timeout
timeout = "10s"
Input and output integration examples
Icinga
-
Centralized Monitoring Dashboard: Integrate the Icinga2 plugin with a visualization tool to create a centralized monitoring dashboard that presents real-time statuses of all monitored services and hosts. This setup allows teams to quickly identify issues and to respond proactively, ensuring minimal downtime.
-
Automated Incident Response: Use the metrics collected by the plugin to trigger automated incident response workflows. For instance, if a service is reported as critical, an automated system could notify relevant team members and even attempt to restart the service, reducing manual intervention and speeding resolution times.
-
Service Reliability Reporting: Combine data from the Icinga with business reporting systems to generate insights on service reliability. By analyzing trends in service states over time, organizations can identify weak points in their infrastructure and improve service availability based on factual data.
-
Cross-System Alerting: Leverage the collected metrics to integrate with various alerting systems. This could route notifications based on specific Icinga2 service states to different departments or teams depending on their roles, enabling tailored and timely responses to potential issues in the infrastructure.
Cortex
-
Unified Multi-Tenant Monitoring: Use Telegraf to collect metrics from different teams or environments and push them to Cortex with separate
X-Scope-OrgID
headers. This enables isolated data ingestion and querying per tenant, ideal for managed services and platform teams. -
Extending Prometheus Coverage to Edge Devices: Deploy Telegraf on edge or IoT devices to collect system metrics and send them to a centralized Cortex cluster. This approach ensures consistent observability even for environments without local Prometheus scrapers.
-
Global Service Observability with Federated Tenants: Aggregate metrics from global infrastructure by configuring Telegraf agents to push data into regional Cortex clusters, each tagged with tenant identifiers. Cortex handles deduplication and centralized access across regions.
-
Custom App Telemetry Pipeline: Collect app-specific telemetry via Telegraf’s
exec
orhttp
input plugins and forward it to Cortex. This allows DevOps teams to monitor app-specific KPIs in a scalable, query-efficient format while keeping metrics logically grouped by tenant or service.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration