Icinga and DuckDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers services & hosts status using Icinga2 Remote API, providing an interface to monitor your infrastructure effectively.
This plugin enables Telegraf to write structured metrics into DuckDB using SQLite-compatible SQL connections, supporting lightweight local analytics and offline metric analysis.
Integration details
Icinga
The Icinga2 Plugin enables users to gather status information from Icinga2’s Remote API. Icinga2 is a powerful monitoring system that checks the health of hosts and services and provides detailed monitoring capabilities. The plugin facilitates retrieving metrics such as the state of hosts and services, as well as detailed API status metrics. This integration is vital for users looking to keep an eye on their infrastructure’s health and performance metrics automatically, leveraging the Icinga2’s extensive API. By utilizing this plugin, users can easily integrate Icinga2 monitoring data with other systems, providing a comprehensive view of their infrastructure status.
DuckDB
Use the Telegraf SQL plugin to write metrics into a local DuckDB database. DuckDB is an in-process OLAP database designed for efficient analytical queries on columnar data. Although it does not provide a traditional client-server interface, DuckDB can be accessed via SQLite-compatible drivers in embedded mode. This allows Telegraf to store time series metrics in DuckDB using SQL, enabling powerful analytics workflows using familiar SQL syntax, Jupyter notebooks, or integration with data science tools like Python and R. DuckDB’s columnar storage and vectorized execution make it ideal for compact and high-performance metric archives.
Configuration
Icinga
[[inputs.icinga2]]
## Required Icinga2 server address
# server = "https://localhost:5665"
## Collected Icinga2 objects ("services", "hosts")
## Specify at least one object to collect from /v1/objects endpoint.
# objects = ["services"]
## Collect metrics from /v1/status endpoint
## Choose from:
## "ApiListener", "CIB", "IdoMysqlConnection", "IdoPgsqlConnection"
# status = []
## Credentials for basic HTTP authentication
# username = "admin"
# password = "admin"
## Maximum time to receive response.
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = true
DuckDB
[[outputs.sql]]
## Use the SQLite driver to connect to DuckDB via Go's database/sql
driver = "sqlite3"
## DSN should point to the DuckDB database file
dsn = "file:/var/lib/telegraf/metrics.duckdb"
## SQL INSERT statement with placeholders for metrics
table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"
## Optional: manage connection pooling
# max_open_connections = 1
# max_idle_connections = 1
# conn_max_lifetime = "0s"
## DuckDB does not require TLS or authentication by default
Input and output integration examples
Icinga
-
Centralized Monitoring Dashboard: Integrate the Icinga2 plugin with a visualization tool to create a centralized monitoring dashboard that presents real-time statuses of all monitored services and hosts. This setup allows teams to quickly identify issues and to respond proactively, ensuring minimal downtime.
-
Automated Incident Response: Use the metrics collected by the plugin to trigger automated incident response workflows. For instance, if a service is reported as critical, an automated system could notify relevant team members and even attempt to restart the service, reducing manual intervention and speeding resolution times.
-
Service Reliability Reporting: Combine data from the Icinga with business reporting systems to generate insights on service reliability. By analyzing trends in service states over time, organizations can identify weak points in their infrastructure and improve service availability based on factual data.
-
Cross-System Alerting: Leverage the collected metrics to integrate with various alerting systems. This could route notifications based on specific Icinga2 service states to different departments or teams depending on their roles, enabling tailored and timely responses to potential issues in the infrastructure.
DuckDB
-
Embedded Metric Warehousing for Notebooks: Write metrics to a local DuckDB file from Telegraf and analyze them in Jupyter notebooks using Python or R. This workflow supports reproducible analytics, ideal for data science experiments or offline troubleshooting.
-
Batch Time-Series Processing on the Edge: Use Telegraf with DuckDB on edge devices to log metrics locally in SQL format. The compact storage and fast analytical capabilities of DuckDB make it ideal for batch processing and low-bandwidth environments.
-
Exploratory Querying of Historical Metrics: Accumulate system metrics over time in DuckDB and perform exploratory data analysis (EDA) using SQL joins, window functions, and aggregates. This enables insights that go beyond what typical time-series dashboards provide.
-
Self-Contained Metric Snapshots: Use DuckDB as a portable metrics archive by shipping
.duckdb
files between systems. Telegraf can collect and store data in this format, and analysts can later load and query it using the DuckDB CLI or integrations with tools like Tableau and Apache Arrow.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration