Icinga and M3DB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin gathers services & hosts status using Icinga2 Remote API, providing an interface to monitor your infrastructure effectively.
This plugin allows Telegraf to stream metrics to M3DB using the Prometheus Remote Write protocol, enabling scalable ingestion through the M3 Coordinator.
Integration details
Icinga
The Icinga2 Plugin enables users to gather status information from Icinga2’s Remote API. Icinga2 is a powerful monitoring system that checks the health of hosts and services and provides detailed monitoring capabilities. The plugin facilitates retrieving metrics such as the state of hosts and services, as well as detailed API status metrics. This integration is vital for users looking to keep an eye on their infrastructure’s health and performance metrics automatically, leveraging the Icinga2’s extensive API. By utilizing this plugin, users can easily integrate Icinga2 monitoring data with other systems, providing a comprehensive view of their infrastructure status.
M3DB
This configuration uses Telegraf’s HTTP output plugin with prometheusremotewrite
format to send metrics directly to M3DB through the M3 Coordinator. M3DB is a distributed time series database designed for scalable, high-throughput metric storage. It supports ingestion of Prometheus remote write data via its Coordinator component, which manages translation and routing into the M3DB cluster. This approach enables organizations to collect metrics from systems that aren’t natively instrumented for Prometheus (e.g., Windows, SNMP, legacy systems) and ingest them efficiently into M3’s long-term, high-performance storage engine. The setup is ideal for high-scale observability stacks with Prometheus compatibility requirements.
Configuration
Icinga
[[inputs.icinga2]]
## Required Icinga2 server address
# server = "https://localhost:5665"
## Collected Icinga2 objects ("services", "hosts")
## Specify at least one object to collect from /v1/objects endpoint.
# objects = ["services"]
## Collect metrics from /v1/status endpoint
## Choose from:
## "ApiListener", "CIB", "IdoMysqlConnection", "IdoPgsqlConnection"
# status = []
## Credentials for basic HTTP authentication
# username = "admin"
# password = "admin"
## Maximum time to receive response.
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = true
M3DB
# Configuration for sending metrics to M3
[outputs.http]
## URL is the address to send metrics to
url = "https://M3_HOST:M3_PORT/api/v1/prom/remote/write"
## HTTP Basic Auth credentials
username = "admin"
password = "password"
## Data format to output.
data_format = "prometheusremotewrite"
## Outgoing HTTP headers
[outputs.http.headers]
Content-Type = "application/x-protobuf"
Content-Encoding = "snappy"
X-Prometheus-Remote-Write-Version = "0.1.0"
Input and output integration examples
Icinga
-
Centralized Monitoring Dashboard: Integrate the Icinga2 plugin with a visualization tool to create a centralized monitoring dashboard that presents real-time statuses of all monitored services and hosts. This setup allows teams to quickly identify issues and to respond proactively, ensuring minimal downtime.
-
Automated Incident Response: Use the metrics collected by the plugin to trigger automated incident response workflows. For instance, if a service is reported as critical, an automated system could notify relevant team members and even attempt to restart the service, reducing manual intervention and speeding resolution times.
-
Service Reliability Reporting: Combine data from the Icinga with business reporting systems to generate insights on service reliability. By analyzing trends in service states over time, organizations can identify weak points in their infrastructure and improve service availability based on factual data.
-
Cross-System Alerting: Leverage the collected metrics to integrate with various alerting systems. This could route notifications based on specific Icinga2 service states to different departments or teams depending on their roles, enabling tailored and timely responses to potential issues in the infrastructure.
M3DB
-
Large-Scale Cloud Infrastructure Monitoring: Deploy Telegraf agents across thousands of virtual machines and containers to collect metrics and stream them into M3DB through the M3 Coordinator. This provides reliable, long-term visibility with minimal storage overhead and high availability.
-
Legacy System Metrics Ingestion: Use Telegraf to gather metrics from older systems that lack native Prometheus exporters (e.g., Windows servers, SNMP devices) and forward them to M3DB via remote write. This bridges modern observability workflows with legacy infrastructure.
-
Centralized App Telemetry Aggregation: Collect application-specific telemetry using Telegraf’s plugin ecosystem (e.g.,
exec
,http
,jolokia
) and push it into M3DB for centralized storage and query via PromQL. This enables unified analytics across diverse data sources. -
Hybrid Cloud Observability: Install Telegraf agents on-prem and in the cloud to collect and remote-write metrics into a centralized M3DB cluster. This ensures consistent visibility across environments while avoiding the complexity of running Prometheus federation layers.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration