InfiniBand and Apache Hudi Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The InfiniBand Telegraf plugin collects performance metrics from all InfiniBand devices installed on a Linux system, providing essential insights for monitoring network performance and reliability.
Writes metrics to Parquet files via Telegraf’s Parquet output plugin, preparing them for ingestion into Apache Hudi’s lakehouse architecture.
Integration details
InfiniBand
This plugin gathers statistics for all InfiniBand devices and ports on the system. InfiniBand is a high-speed networking technology commonly used in high-performance computing and enterprise data centers. The plugin retrieves various performance counters from the system’s InfiniBand devices located in /sys/class/infiniband/<dev>/port/<port>/counters/
. The metrics depend on the specific InfiniBand hardware and include various packet and error statistics that are essential for monitoring network health and performance. By utilizing this plugin, users can gain insights into the operational status of their InfiniBand networks, helping to identify potential issues and optimize performance.
Apache Hudi
This configuration leverages Telegraf’s Parquet plugin to serialize metrics into columnar Parquet files suitable for downstream ingestion by Apache Hudi. The plugin writes metrics grouped by metric name into files in a specified directory, buffering writes for efficiency and optionally rotating files on timers. It considers schema compatibility—metrics with incompatible schemas are dropped—ensuring consistency. Apache Hudi can then consume these Parquet files via tools like DeltaStreamer or Spark jobs, enabling transactional ingestion, time-travel queries, and upserts on your time series data.
Configuration
InfiniBand
# Gets counters from all InfiniBand cards and ports installed
# This plugin ONLY supports Linux
[[inputs.infiniband]]
# no configuration
## Collect RDMA counters
# gather_rdma = false
Apache Hudi
[[outputs.parquet]]
## Directory to write parquet files in. If a file already exists the output
## will attempt to continue using the existing file.
directory = "/var/lib/telegraf/hudi_metrics"
## File rotation interval (default is no rotation)
# rotation_interval = "1h"
## Buffer size before writing (default is 1000 metrics)
# buffer_size = 1000
## Optional: compression codec (snappy, gzip, etc.)
# compression_codec = "snappy"
## When grouping metrics, each metric name goes to its own file
## If a metric’s schema doesn’t match the existing schema, it will be dropped
Input and output integration examples
InfiniBand
-
Performance Monitoring in High-Performance Computing (HPC): Monitor the performance metrics of InfiniBand interconnects in a high-performance computing cluster. By analyzing metrics such as packet errors and throughput, system administrators can ensure optimal operation and quickly identify any performance degradation. This setup enhances the reliability of computational tasks by allowing timely interventions based on accurate monitoring data.
-
Network Health Audits: Perform routine health checks of InfiniBand networks. The detailed metrics gathered, such as excessive buffer overruns and link integrity errors, provide valuable insights for network audits. By establishing baseline performance and watching for anomalies, IT professionals can ensure the stability and performance of critical infrastructures.
-
Integration with Alerting Systems: Set up the InfiniBand plugin to work in conjunction with alerting systems to trigger notifications based on performance thresholds. For instance, if the number of link errors exceeds a predefined limit, an alert can be sent to the network operations team. This proactive approach ensures that potential issues are addressed before they impact business operations.
-
Data Visualization Dashboards: Feed InfiniBand metrics to a visualization tool to create dashboards that display the real-time performance of the network. This can help stakeholders visualize critical data such as packet transmission rates and errors, facilitating better decision-making regarding network management and capacity planning.
Apache Hudi
-
Transactional Lakehouse Metrics: Buffer and write Web service metrics as Parquet files for DeltaStreamer to ingest into Hudi, enabling upserts, ACID compliance, and time-travel on historical performance data.
-
Edge Device Batch Analytics: Telegraf running on IoT gateways writes metrics to Parquet locally, where periodic Spark jobs ingest them into Hudi for long-term analytics and traceability.
-
Schema-Enforced Abnormal Metric Handling: Use Parquet plugin’s strict schema-dropping behavior to prevent malformed or unexpected metric changes. Hudi ingestion then guarantees consistent schema and data quality in downstream datasets.
-
Data Platform Integration: Store Telegraf metrics as Parquet files in an S3/ADLS landing zone. Hudi’s Spark-based ingestion pipeline then loads them into a unified, queryable lakehouse with business events and logs.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration