InfiniBand and Librato Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The InfiniBand Telegraf plugin collects performance metrics from all InfiniBand devices installed on a Linux system, providing essential insights for monitoring network performance and reliability.
The Librato plugin for Telegraf is designed to facilitate seamless integration with the Librato Metrics API, allowing for efficient metric reporting and monitoring.
Integration details
InfiniBand
This plugin gathers statistics for all InfiniBand devices and ports on the system. InfiniBand is a high-speed networking technology commonly used in high-performance computing and enterprise data centers. The plugin retrieves various performance counters from the system’s InfiniBand devices located in /sys/class/infiniband/<dev>/port/<port>/counters/
. The metrics depend on the specific InfiniBand hardware and include various packet and error statistics that are essential for monitoring network health and performance. By utilizing this plugin, users can gain insights into the operational status of their InfiniBand networks, helping to identify potential issues and optimize performance.
Librato
The Librato plugin enables Telegraf to send metrics to the Librato Metrics API. To authenticate, users must provide an api_user
and api_token
, which can be acquired from the Librato account settings. This integration allows for efficient monitoring and reporting of custom metrics within the Librato platform. The plugin also utilizes a source_tag
option that can enrich the metrics with contextual information from Point Tags; however, it does not currently support sending associated Point Tags. It is essential to note that any point value sent that cannot be converted to a float64 type will be skipped, ensuring that only valid metrics are processed and sent to Librato. The plugin also supports secret-store options for managing sensitive authentication credentials securely, facilitating best practices in credential management.
Configuration
InfiniBand
# Gets counters from all InfiniBand cards and ports installed
# This plugin ONLY supports Linux
[[inputs.infiniband]]
# no configuration
## Collect RDMA counters
# gather_rdma = false
Librato
[[outputs.librato]]
## Librato API Docs
## http://dev.librato.com/v1/metrics-authentication
## Librato API user
api_user = "[email protected]" # required.
## Librato API token
api_token = "my-secret-token" # required.
## Debug
# debug = false
## Connection timeout.
# timeout = "5s"
## Output source Template (same as graphite buckets)
## see https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md#graphite
## This template is used in librato's source (not metric's name)
template = "host"
Input and output integration examples
InfiniBand
-
Performance Monitoring in High-Performance Computing (HPC): Monitor the performance metrics of InfiniBand interconnects in a high-performance computing cluster. By analyzing metrics such as packet errors and throughput, system administrators can ensure optimal operation and quickly identify any performance degradation. This setup enhances the reliability of computational tasks by allowing timely interventions based on accurate monitoring data.
-
Network Health Audits: Perform routine health checks of InfiniBand networks. The detailed metrics gathered, such as excessive buffer overruns and link integrity errors, provide valuable insights for network audits. By establishing baseline performance and watching for anomalies, IT professionals can ensure the stability and performance of critical infrastructures.
-
Integration with Alerting Systems: Set up the InfiniBand plugin to work in conjunction with alerting systems to trigger notifications based on performance thresholds. For instance, if the number of link errors exceeds a predefined limit, an alert can be sent to the network operations team. This proactive approach ensures that potential issues are addressed before they impact business operations.
-
Data Visualization Dashboards: Feed InfiniBand metrics to a visualization tool to create dashboards that display the real-time performance of the network. This can help stakeholders visualize critical data such as packet transmission rates and errors, facilitating better decision-making regarding network management and capacity planning.
Librato
-
Real-time Application Monitoring: Utilize Librato to collect performance metrics from a web application in real-time. This setup involves sending response times, error rates, and user interactions to Librato, allowing developers to monitor the application’s health and performance metrics closely. By analyzing these metrics, teams can quickly identify and address performance bottlenecks or application failures before they impact end users.
-
Infrastructure Metrics Aggregation: Leverage this plugin to gather and send metrics from various infrastructure components, such as servers or containers, to Librato for centralized monitoring. Configuring the plugin to send CPU, memory usage, and disk I/O metrics enables system administrators to have a comprehensive view of infrastructure performance, assisting in capacity planning and resource optimization strategies.
-
Custom Metrics for Business Operations: Feed business-specific metrics, such as sales transactions or user sign-ups, to the Librato service using this plugin. By tracking these custom metrics, businesses can gain insights into their operational performance and make data-driven decisions to enhance their strategies, marketing efforts, or product development initiatives.
-
Anomaly Detection in Metrics: Implement monitoring tools that utilize machine learning for anomaly detection. By continuously sending real-time metrics to Librato, teams can analyze trends and automatically flag unusual behavior, such as sudden spikes in latency or unusual traffic patterns, enabling timely intervention and troubleshooting.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration