InfiniBand and OpenObserve Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider InfiniBand and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The InfiniBand Telegraf plugin collects performance metrics from all InfiniBand devices installed on a Linux system, providing essential insights for monitoring network performance and reliability.

This configuration pairs Telegraf’s HTTP output with OpenObserve’s native JSON ingestion API, turning any Telegraf agent into a first-class OpenObserve collector.

Integration details

InfiniBand

This plugin gathers statistics for all InfiniBand devices and ports on the system. InfiniBand is a high-speed networking technology commonly used in high-performance computing and enterprise data centers. The plugin retrieves various performance counters from the system’s InfiniBand devices located in /sys/class/infiniband/<dev>/port/<port>/counters/. The metrics depend on the specific InfiniBand hardware and include various packet and error statistics that are essential for monitoring network health and performance. By utilizing this plugin, users can gain insights into the operational status of their InfiniBand networks, helping to identify potential issues and optimize performance.

OpenObserve

OpenObserve is an open source observability platform written in Rust that stores data cost-effectively on object storage or local disk. It exposes REST endpoints such as /api/{org}/ingest/metrics/_json that accept batched metric documents conforming to a concise JSON schema, making it an attractive drop-in replacement for Loki or Elasticsearch stacks. The Telegraf HTTP output plugin streams metrics to arbitrary HTTP targets; when the "data_format = "json"" serializer is selected, Telegraf batches its metric objects into a payload that matches OpenObserve’s ingestion contract. The plugin supports configurable batch size, custom headers, TLS, and compression, allowing operators to authenticate with Basic or Bearer tokens and to enforce back-pressure without additional collectors. By reusing existing Telegraf agents already collecting system, application, or SNMP data, organizations can funnel rich telemetry into OpenObserve dashboards and SQL-like analytics with minimal overhead, enabling unified observability, long-term retention, and real-time alerting without vendor lock-in.

Configuration

InfiniBand

# Gets counters from all InfiniBand cards and ports installed
# This plugin ONLY supports Linux
[[inputs.infiniband]]
  # no configuration

  ## Collect RDMA counters
  # gather_rdma = false

OpenObserve

[[outputs.http]]
  ## OpenObserve JSON metrics ingestion endpoint
  url = "https://api.openobserve.ai/api/default/ingest/metrics/_json"

  ## Use POST to push batches
  method = "POST"

  ## Basic auth header (base64 encoded "username:password")
  headers = { Authorization = "Basic dXNlcjpwYXNzd29yZA==" }

  ## Timeout for HTTP requests
  timeout = "10s"

  ## Override Content-Type to match OpenObserve expectation
  content_type = "application/json"

  ## Force Telegraf to batch and serialize metrics as JSON
  data_format = "json"

  ## JSON serializer specific options
  json_timestamp_units = "1ms"

  ## Uncomment to restrict batch size
  # batch_size = 5000

Input and output integration examples

InfiniBand

  1. Performance Monitoring in High-Performance Computing (HPC): Monitor the performance metrics of InfiniBand interconnects in a high-performance computing cluster. By analyzing metrics such as packet errors and throughput, system administrators can ensure optimal operation and quickly identify any performance degradation. This setup enhances the reliability of computational tasks by allowing timely interventions based on accurate monitoring data.

  2. Network Health Audits: Perform routine health checks of InfiniBand networks. The detailed metrics gathered, such as excessive buffer overruns and link integrity errors, provide valuable insights for network audits. By establishing baseline performance and watching for anomalies, IT professionals can ensure the stability and performance of critical infrastructures.

  3. Integration with Alerting Systems: Set up the InfiniBand plugin to work in conjunction with alerting systems to trigger notifications based on performance thresholds. For instance, if the number of link errors exceeds a predefined limit, an alert can be sent to the network operations team. This proactive approach ensures that potential issues are addressed before they impact business operations.

  4. Data Visualization Dashboards: Feed InfiniBand metrics to a visualization tool to create dashboards that display the real-time performance of the network. This can help stakeholders visualize critical data such as packet transmission rates and errors, facilitating better decision-making regarding network management and capacity planning.

OpenObserve

  1. Edge Device Health Mirror: Deploy Telegraf on thousands of industrial IoT devices to capture temperature, vibration, and power metrics, then use this output to push JSON batches to OpenObserve. Plant operators gain a real-time overview of machine health and can trigger maintenance based on anomalies without relying on heavyweight collectors.

  2. Blue-Green Deployment Canary: Attach a lightweight Telegraf sidecar to each Kubernetes release-candidate pod that scrapes /metrics and forwards container stats to a dedicated “canary” stream in OpenObserve. Continuous comparison of error rates between blue and green versions empowers the CI pipeline to auto-roll back poor performers within seconds.

  3. Multi-Tenant SaaS Billing Pipeline: Emit per-customer usage counters via Telegraf and tag them with tenant_id; the HTTP plugin posts them to OpenObserve where SQL reports aggregate usage into invoices, eliminating separate metering services and simplifying compliance audits.

  4. Security Threat Scoring: Fuse Suricata events and host resource metrics in Telegraf, deliver them to OpenObserve’s analytics engine, and run stream-processing rules that correlate spikes in suspicious traffic with CPU saturation to produce an actionable threat score and automatically open tickets in a SOAR platform.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration