Intel PowerStat and Azure Application Insights Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Intel PowerStat and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

Monitor power statistics on Intel-based platforms and is compatible with Linux-based operating systems. It helps in understanding and managing power efficiency and CPU performance.

This plugin writes Telegraf metrics to Azure Application Insights, enabling powerful monitoring and diagnostics.

Integration details

Intel PowerStat

The Intel PowerStat plugin is designed to monitor power statistics specifically on Intel-based platforms running a Linux operating system. It offers visibility into critical metrics such as CPU temperature, utilization, and power consumption, making it essential for power saving initiatives and workload migration strategies. By leveraging telemetry frameworks, this plugin enables users to gain insights into platform-level metrics that help with monitoring and analytics systems in the context of Management and Orchestration (MANO). It facilitates the ability to make informed decisions and perform corrective actions based on the state of the platform, ultimately contributing to better system efficiency and reliability.

Azure Application Insights

The Azure Application Insights plugin integrates Telegraf with Azure’s Application Insights service, facilitating the seamless transmission of metrics from various sources to a centralized monitoring platform. This plugin empowers users to harness the capabilities of Azure Application Insights, a powerful application performance management tool, allowing developers and IT operations teams to gain valuable insights into the performance, availability, and usage of their applications. By employing this plugin, users can monitor application telemetry and operational data efficiently, contributing to better diagnostics and improved application performance.

Key features of this plugin include the ability to specify an instrumentation key for the Application Insights resource, configure the endpoint URL for tracking, and enable additional diagnostic logging for a more comprehensive analysis. Furthermore, the plugin provides context tagging capabilities, allowing the addition of specific Application Insights context tags to enhance the contextual information associated with metrics being sent. These features collectively make the Azure Application Insights Output Plugin a vital tool for organizations looking to optimize their monitoring capabilities within Azure.

Configuration

Intel PowerStat

[[inputs.intel_powerstat]]
  # package_metrics = ["current_power_consumption", "current_dram_power_consumption", "thermal_design_power"]
  # cpu_metrics = []
  # included_cpus = []
  # excluded_cpus = []
  # event_definitions = ""
  # msr_read_timeout = "0ms"

Azure Application Insights

[[outputs.application_insights]]
  ## Instrumentation key of the Application Insights resource.
  instrumentation_key = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx"

  ## Regions that require endpoint modification https://docs.microsoft.com/en-us/azure/azure-monitor/app/custom-endpoints
  # endpoint_url = "https://dc.services.visualstudio.com/v2/track"

  ## Timeout for closing (default: 5s).
  # timeout = "5s"

  ## Enable additional diagnostic logging.
  # enable_diagnostic_logging = false

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of
  ## the table

  ## Context Tag Sources add Application Insights context tags to a tag value.
  ##
  ## For list of allowed context tag keys see:
  ## https://github.com/microsoft/ApplicationInsights-Go/blob/master/appinsights/contracts/contexttagkeys.go
  # [outputs.application_insights.context_tag_sources]
  #   "ai.cloud.role" = "kubernetes_container_name"
  #   "ai.cloud.roleInstance" = "kubernetes_pod_name"

Input and output integration examples

Intel PowerStat

  1. Optimizing Data Center Energy Usage: Monitor power consumption metrics across all CPUs in a data center. By capturing real-time data, administrators can identify which servers consume the most power and implement shutdowns or load balancing strategies during low demand periods, effectively reducing operational costs.

  2. Dynamic Workload Migration Based on Power Efficiency: Integrate this plugin with a cloud orchestration tool to enable dynamic migration of workloads based on power usage metrics. If a particular server is recorded as consuming excessive power without corresponding output, the orchestrator can seamlessly migrate workloads to more efficient nodes, ensuring optimal resource utilization and lower energy expenses.

  3. Monitoring and Alerting Mechanism for Overheating CPUs: Implement an alerting system using the CPU temperature metrics captured by Intel PowerStat. Setting thresholds for temperature can alert system administrators when a CPU is prone to overheating, allowing proactive measures to be taken before hardware damage occurs, ultimately extending the life of the components.

  4. Performance Benchmarking for CPU-intensive Applications: Use the metrics provided to benchmark the performance of CPU-intensive applications. By analyzing the cpu_frequency, cpu_temperature, and power metrics under load, developers can optimize application performance and make informed decisions regarding scaling and resource allocation.

Azure Application Insights

  1. Application Performance Monitoring: Utilize the Azure Application Insights plugin to continuously monitor the performance of your web applications or microservices. By sending Telegraf metrics directly to Application Insights, teams can visualize real-time application performance data, enabling proactive tuning and optimization of application resources. This setup not only enhances the reliability of applications but also ensures user satisfaction through consistent performance monitoring.

  2. Integrated Logging and Telemetry: Combine this plugin with centralized logging solutions to provide a comprehensive observability stack. By sending telecom data to Azure Application Insights, teams can correlate performance metrics with log data and gain deeper insights into application behavior, allowing for more efficient troubleshooting and root cause analysis.

  3. Contextual Monitoring of Cloud Resources: Use the context tagging feature to enrich your application metrics with specific contextual information related to your cloud environment. This enhanced context can be invaluable for understanding the performance of cloud-native applications, enabling better scaling decisions and resource management based on real usage patterns.

  4. Real-time Alerts Setup: Configure Application Insights to trigger alerts based on specific metrics received via this plugin. This allows teams to be notified of performance degradation or anomalies in real-time, enabling immediate action to mitigate issues and maintain high availability of applications.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration