Intel PowerStat and Redis Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
Monitor power statistics on Intel-based platforms and is compatible with Linux-based operating systems. It helps in understanding and managing power efficiency and CPU performance.
The Redis plugin enables users to send metrics collected by Telegraf directly to Redis. This integration is ideal for applications that require robust time series data storage and analysis.
Integration details
Intel PowerStat
The Intel PowerStat plugin is designed to monitor power statistics specifically on Intel-based platforms running a Linux operating system. It offers visibility into critical metrics such as CPU temperature, utilization, and power consumption, making it essential for power saving initiatives and workload migration strategies. By leveraging telemetry frameworks, this plugin enables users to gain insights into platform-level metrics that help with monitoring and analytics systems in the context of Management and Orchestration (MANO). It facilitates the ability to make informed decisions and perform corrective actions based on the state of the platform, ultimately contributing to better system efficiency and reliability.
Redis
The Redis Telegraf plugin is designed for writing metrics to RedisTimeSeries, a specialized Redis database module for time series data. This plugin facilitates the integration of Telegraf with RedisTimeSeries, allowing for the efficient storage and retrieval of timestamped data. With RedisTimeSeries, users can take advantage of enhanced capabilities for managing time series data, including aggregated views and range queries. The plugin offers various configuration options to enable the flexibility needed to connect securely to your Redis database, including support for Authentication, Timeouts, data type conversions, and TLS configurations. The underlying technology leverages Redis’ efficiency and scalability, making it an excellent choice for high-volume metric environments, where real-time processing is essential.
Configuration
Intel PowerStat
[[inputs.intel_powerstat]]
# package_metrics = ["current_power_consumption", "current_dram_power_consumption", "thermal_design_power"]
# cpu_metrics = []
# included_cpus = []
# excluded_cpus = []
# event_definitions = ""
# msr_read_timeout = "0ms"
Redis
[[outputs.redistimeseries]]
## The address of the RedisTimeSeries server.
address = "127.0.0.1:6379"
## Redis ACL credentials
# username = ""
# password = ""
# database = 0
## Timeout for operations such as ping or sending metrics
# timeout = "10s"
## Enable attempt to convert string fields to numeric values
## If "false" or in case the string value cannot be converted the string
## field will be dropped.
# convert_string_fields = true
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
Input and output integration examples
Intel PowerStat
-
Optimizing Data Center Energy Usage: Monitor power consumption metrics across all CPUs in a data center. By capturing real-time data, administrators can identify which servers consume the most power and implement shutdowns or load balancing strategies during low demand periods, effectively reducing operational costs.
-
Dynamic Workload Migration Based on Power Efficiency: Integrate this plugin with a cloud orchestration tool to enable dynamic migration of workloads based on power usage metrics. If a particular server is recorded as consuming excessive power without corresponding output, the orchestrator can seamlessly migrate workloads to more efficient nodes, ensuring optimal resource utilization and lower energy expenses.
-
Monitoring and Alerting Mechanism for Overheating CPUs: Implement an alerting system using the CPU temperature metrics captured by Intel PowerStat. Setting thresholds for temperature can alert system administrators when a CPU is prone to overheating, allowing proactive measures to be taken before hardware damage occurs, ultimately extending the life of the components.
-
Performance Benchmarking for CPU-intensive Applications: Use the metrics provided to benchmark the performance of CPU-intensive applications. By analyzing the
cpu_frequency
,cpu_temperature
, and power metrics under load, developers can optimize application performance and make informed decisions regarding scaling and resource allocation.
Redis
-
Monitoring IoT Sensor Data: Utilize the Redis Telegraf plugin to collect and store data from IoT sensors in real-time. By connecting the plugin to a RedisTimeSeries database, users can analyze trends in temperature, humidity, or other environmental factors. The ability to query historical sensor data efficiently will aid in predictive maintenance and help in resource management.
-
Financial Market Data Aggregation: Employ this plugin to track and store time-sensitive financial data from various sources. By sending metrics to Redis, financial institutions can aggregate and analyze market trends or price changes over time, providing them with actionable insights derived from reliable time series analytics.
-
Application Performance Monitoring (APM): Implement the Redis plugin for gathering application performance metrics such as response times and CPU usage. Users can visualize their application’s performance over time with RedisTimeSeries, allowing them to identify bottlenecks and optimize resource allocation swiftly.
-
Energy Consumption Tracking: Leverage this plugin to monitor energy usage in buildings over time. By integrating with smart meters and sending data to RedisTimeSeries, municipalities or enterprises can analyze energy consumption patterns, helping to implement energy-saving measures and sustainability practices.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration