IPMI Sensor and Microsoft Fabric Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The IPMI Sensor Plugin facilitates the collection of server health metrics directly from hardware via the IPMI protocol, querying sensor data from either local or remote systems.
The Microsoft Fabric plugin writes metrics to Real time analytics in Fabric services, enabling powerful data storage and analysis capabilities.
Integration details
IPMI Sensor
The IPMI Sensor plugin is designed to gather bare metal metrics via the command line utility ipmitool
, which interfaces with the Intelligent Platform Management Interface (IPMI). This protocol provides management and monitoring capabilities for hardware components in server systems, allowing for the retrieval of critical system health metrics such as temperature, fan speeds, and power supply status from both local and remote servers. When configured without specified servers, the plugin defaults to querying the local machine’s sensor statistics using the ipmitool sdr
command. In scenarios covering remote hosts, authentication is supported through username and password using the command format ipmitool -I lan -H SERVER -U USERID -P PASSW0RD sdr
. This flexibility allows users to monitor systems effectively across various environments. The plugin also supports multiple sensor types, including chassis power status and DCMI power readings, catering to administrators needing real-time insight into server operations.
Microsoft Fabric
This plugin allows you to leverage Microsoft Fabric’s capabilities to store and analyze your Telegraf metrics. Eventhouse is a high-performance, scalable data-store designed for real-time analytics. It allows you to ingest, store and query large volumes of data with low latency. The plugin supports both events and metrics with versatile grouping options. It provides various configuration parameters including connection strings specifying details like the data source, ingestion types, and which tables to use for storage. With support for streaming ingestion and event streams, this plugin enables seamless integration and data flow into Microsoft’s analytics ecosystem, allowing for rich data querying capabilities and near-real-time processing.
Configuration
IPMI Sensor
[[inputs.ipmi_sensor]]
## Specify the path to the ipmitool executable
# path = "/usr/bin/ipmitool"
## Use sudo
## Setting 'use_sudo' to true will make use of sudo to run ipmitool.
## Sudo must be configured to allow the telegraf user to run ipmitool
## without a password.
# use_sudo = false
## Servers
## Specify one or more servers via a url. If no servers are specified, local
## machine sensor stats will be queried. Uses the format:
## [username[:password]@][protocol[(address)]]
## e.g. root:passwd@lan(127.0.0.1)
# servers = ["USERID:PASSW0RD@lan(192.168.1.1)"]
## Session privilege level
## Choose from: CALLBACK, USER, OPERATOR, ADMINISTRATOR
# privilege = "ADMINISTRATOR"
## Timeout
## Timeout for the ipmitool command to complete.
# timeout = "20s"
## Metric schema version
## See the plugin readme for more information on schema versioning.
# metric_version = 1
## Sensors to collect
## Choose from:
## * sdr: default, collects sensor data records
## * chassis_power_status: collects the power status of the chassis
## * dcmi_power_reading: collects the power readings from the Data Center Management Interface
# sensors = ["sdr"]
## Hex key
## Optionally provide the hex key for the IMPI connection.
# hex_key = ""
## Cache
## If ipmitool should use a cache
## Using a cache can speed up collection times depending on your device.
# use_cache = false
## Path to the ipmitools cache file (defaults to OS temp dir)
## The provided path must exist and must be writable
# cache_path = ""
Microsoft Fabric
[[outputs.microsoft_fabric]]
## The URI property of the resource on Azure
connection_string = "https://trd-abcd.xx.kusto.fabric.microsoft.com;Database=kusto_eh;Table Name=telegraf_dump;Key=value"
## Client timeout
# timeout = "30s"
Input and output integration examples
IPMI Sensor
-
Centralized Monitoring Dashboard: Utilize the IPMI Sensor plugin to gather metrics from multiple servers and compile them into a centralized monitoring dashboard. This enables real-time visibility into server health across data centers. Administrators can track metrics like temperature and power usage, helping them make data-driven decisions about resource allocation, potential failures, and maintenance schedules.
-
Automated Power Alerts: Incorporate the plugin into an alerting system that monitors chassis power status and triggers alerts when anomalies are detected. For instance, if the power status indicates a failure or if watt values exceed expected thresholds, automated notifications can be sent to operations teams, ensuring prompt attention to hardware issues.
-
Energy Consumption Analysis: Leverage the DCMI power readings collected via the plugin to analyze energy consumption patterns of hardware over time. By integrating these readings with analytics platforms, organizations can identify opportunities to reduce power usage, optimize efficiency, and potentially decrease operational costs in large server farms or cloud infrastructures.
-
Health Check Automation: Schedule regular health checks by using the IPMI Sensor Plugin to collect data from a fleet of servers. This data can be logged and compared against historical performance metrics to identify trends, outliers, or signs of impending hardware failure, allowing IT teams to take proactive measures and reduce downtime.
Microsoft Fabric
-
Real-time Monitoring Dashboards: Utilize the Microsoft Fabric plugin to feed live metrics from your applications into a real-time dashboard on Microsoft Fabric. This allows teams to visualize key performance indicators instantly, enabling quick decision-making and timely responses to performance issues.
-
Automated Data Ingestion from IoT Devices: Use this plugin in scenarios where metrics from IoT devices need to be ingested into Azure for analysis. Using the plugin’s capabilities, data can be streamed continuously, facilitating real-time analytics and reporting without complex coding efforts.
-
Cross-Platform Data Aggregation: Leverage the plugin to consolidate metrics from multiple systems and applications into a single Azure Data Explorer table. This use case enables easier data management and analysis by centralizing disparate data sources within a unified analytics framework.
-
Enhanced Event Transformation Workflows: Integrate the plugin with Eventstreams to facilitate real-time event ingestion and transformation. By configuring different metrics and partition keys, users can manipulate the flow of data as it enters the system, allowing for advanced processing before the data reaches its final destination.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration