IPMI Sensor and Zabbix Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The IPMI Sensor Plugin facilitates the collection of server health metrics directly from hardware via the IPMI protocol, querying sensor data from either local or remote systems.
This plugin sends metrics to Zabbix via traps, allowing for efficient monitoring of systems and applications. It supports automated configuration and data sending based on dynamic metrics collected by Telegraf.
Integration details
IPMI Sensor
The IPMI Sensor plugin is designed to gather bare metal metrics via the command line utility ipmitool
, which interfaces with the Intelligent Platform Management Interface (IPMI). This protocol provides management and monitoring capabilities for hardware components in server systems, allowing for the retrieval of critical system health metrics such as temperature, fan speeds, and power supply status from both local and remote servers. When configured without specified servers, the plugin defaults to querying the local machine’s sensor statistics using the ipmitool sdr
command. In scenarios covering remote hosts, authentication is supported through username and password using the command format ipmitool -I lan -H SERVER -U USERID -P PASSW0RD sdr
. This flexibility allows users to monitor systems effectively across various environments. The plugin also supports multiple sensor types, including chassis power status and DCMI power readings, catering to administrators needing real-time insight into server operations.
Zabbix
The Telegraf Zabbix plugin is designed to send metrics to Zabbix, an open-source monitoring solution, using the trap protocol. It supports various versions from 3.0 to 6.0, ensuring compatibility with recent updates. The plugin facilitates easy integration with the Zabbix ecosystem, allowing users to send collected metrics and monitor system performance seamlessly. Key functionalities include the ability to define the address and port of the Zabbix server, options for prefixing keys, determining the type of data sent (active vs. trapper), and features for low-level discovery (LLD) enabling dynamic item creation based on the metrics observed. Configuration options also allow for autoregistration and resending intervals for LLD data, ensuring that the metrics are up-to-date and relevant. Additionally, the trap format used for sending metrics is structured to facilitate efficient data transfer and processing in Zabbix.
Configuration
IPMI Sensor
[[inputs.ipmi_sensor]]
## Specify the path to the ipmitool executable
# path = "/usr/bin/ipmitool"
## Use sudo
## Setting 'use_sudo' to true will make use of sudo to run ipmitool.
## Sudo must be configured to allow the telegraf user to run ipmitool
## without a password.
# use_sudo = false
## Servers
## Specify one or more servers via a url. If no servers are specified, local
## machine sensor stats will be queried. Uses the format:
## [username[:password]@][protocol[(address)]]
## e.g. root:passwd@lan(127.0.0.1)
# servers = ["USERID:PASSW0RD@lan(192.168.1.1)"]
## Session privilege level
## Choose from: CALLBACK, USER, OPERATOR, ADMINISTRATOR
# privilege = "ADMINISTRATOR"
## Timeout
## Timeout for the ipmitool command to complete.
# timeout = "20s"
## Metric schema version
## See the plugin readme for more information on schema versioning.
# metric_version = 1
## Sensors to collect
## Choose from:
## * sdr: default, collects sensor data records
## * chassis_power_status: collects the power status of the chassis
## * dcmi_power_reading: collects the power readings from the Data Center Management Interface
# sensors = ["sdr"]
## Hex key
## Optionally provide the hex key for the IMPI connection.
# hex_key = ""
## Cache
## If ipmitool should use a cache
## Using a cache can speed up collection times depending on your device.
# use_cache = false
## Path to the ipmitools cache file (defaults to OS temp dir)
## The provided path must exist and must be writable
# cache_path = ""
Zabbix
[[outputs.zabbix]]
## Address and (optional) port of the Zabbix server
address = "zabbix.example.com:10051"
## Send metrics as type "Zabbix agent (active)"
# agent_active = false
## Add prefix to all keys sent to Zabbix.
# key_prefix = "telegraf."
## Name of the tag that contains the host name. Used to set the host in Zabbix.
## If the tag is not found, use the hostname of the system running Telegraf.
# host_tag = "host"
## Skip measurement prefix to all keys sent to Zabbix.
# skip_measurement_prefix = false
## This field will be sent as HostMetadata to Zabbix Server to autoregister the host.
## To enable this feature, this option must be set to a value other than "".
# autoregister = ""
## Interval to resend auto-registration data to Zabbix.
## Only applies if autoregister feature is enabled.
## This value is a lower limit, the actual resend should be triggered by the next flush interval.
# autoregister_resend_interval = "30m"
## Interval to send LLD data to Zabbix.
## This value is a lower limit, the actual resend should be triggered by the next flush interval.
# lld_send_interval = "10m"
## Interval to delete stored LLD known data and start capturing it again.
## This value is a lower limit, the actual resend should be triggered by the next flush interval.
# lld_clear_interval = "1h"
Input and output integration examples
IPMI Sensor
-
Centralized Monitoring Dashboard: Utilize the IPMI Sensor plugin to gather metrics from multiple servers and compile them into a centralized monitoring dashboard. This enables real-time visibility into server health across data centers. Administrators can track metrics like temperature and power usage, helping them make data-driven decisions about resource allocation, potential failures, and maintenance schedules.
-
Automated Power Alerts: Incorporate the plugin into an alerting system that monitors chassis power status and triggers alerts when anomalies are detected. For instance, if the power status indicates a failure or if watt values exceed expected thresholds, automated notifications can be sent to operations teams, ensuring prompt attention to hardware issues.
-
Energy Consumption Analysis: Leverage the DCMI power readings collected via the plugin to analyze energy consumption patterns of hardware over time. By integrating these readings with analytics platforms, organizations can identify opportunities to reduce power usage, optimize efficiency, and potentially decrease operational costs in large server farms or cloud infrastructures.
-
Health Check Automation: Schedule regular health checks by using the IPMI Sensor Plugin to collect data from a fleet of servers. This data can be logged and compared against historical performance metrics to identify trends, outliers, or signs of impending hardware failure, allowing IT teams to take proactive measures and reduce downtime.
Zabbix
-
Dynamic Monitoring of Containerized Applications: Integration of the Zabbix plugin can be leveraged to monitor Docker containers dynamically. As containers are created and removed, the plugin can automatically update Zabbix with the appropriate metrics, ensuring that monitoring stays current without manual configuration. This enhances visibility into resource usage and performance metrics for microservices orchestrated with Kubernetes or Docker Swarm.
-
Real-Time Performance Monitoring with Auto-registration: By enabling the autoregister feature, the plugin can automatically register hosts in Zabbix based on the metrics received. This scenario provides a streamlined approach to add new hosts to monitoring without manual setup, which is particularly useful in environments where hosts may frequently spin up and down, such as serverless architectures or cloud-based deployments.
-
Leveraging Low-level Discovery for Flexible Metric Capture: Using low-level discovery, this plugin allows Zabbix to adaptively create items for metrics that are not predefined. In a scenario involving multiple network devices reporting different performance metrics, the plugin can dynamically inform Zabbix about new metrics as they appear, thus ensuring comprehensive monitoring capabilities that evolve with the monitored systems.
-
Centralized Monitoring of Distributed Systems: The Zabbix plugin can be utilized in a centralized monitoring setup for distributed systems where multiple Telegraf instances are running across different geographical locations. By sending all metrics to a central Zabbix server, organizations can achieve a holistic view of their infrastructure’s performance and make informed operational decisions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration